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INTRODUCTION

In 1988, the analysis on time scales was introduced by Stefan Hilger in his Ph.D.
dissertation in order to build bridges between continuous and discrete systems and
unify two these ones. One of the most important problems is to consider the stability
of dynamic equations. There have been a lot of works on the theory of time scales
published over the years. The dissertation’s content has mentioned three problems:
Lyapunov exponent, Bohl exponent, and stability radius of dynamic equations.

Bohl exponent, Lyapunov exponent investigate the asymptotic behavior of solutions
of differential equations. Lyapunov exponent is introduced by A. M. Lyapunov (1857-
1918) in his Ph.D. dissertation in 1892, Bohl exponent, by P. Bohl (1865-1921) in 1913
in his article1. Both of them describe the exponential growth of solutions of dynamic
equations on time scales, ẋ = A(t)x.

The first Lyapunov method (or Lyapunov exponent method) was a quite classical
and basic concept for studying differential and difference equations, see Li, Yang,
and Zhang (2014), Martynyuk (2013, 2016), and it is a useful tool to study the sta-
bility of linear systems. But so far, there has been no work dealing with the concept
of Lyapunov exponents and the stability for functions defined on time scales. The
main reason is that the traditional approach to Lyapunov exponents via logarithm
functions is no longer valid. Because, there is no reasonable definition for logarithm
functions on time scales, which one regards as the inverse of the exponential function
ep(t)(t, s).

We study the first Lyapunov method for dynamic equations on time scales with a
suitable approach, instead of considering the limit lim supt→∞

1
t ln | f (t)|, we will use

the oscillation of the ratio | f (t)|
eα(t,t0)

as t → ∞ in the parameter α to define the Lya-
punov exponent of a function f on time scales, and use it to investigate the stability
of dynamic equations

x∆ = A(t)x

on time scales. We obtain some main results, such as the definition of Lyapunov ex-
ponent κL[ f (·)] of the function f (·), the sufficient and necessary condition for the
existence of κL[ f (·)], the sufficient condition on the boundedness of Lyapunov ex-
ponent κL[x(·)], where x(·) is a nontrivial solution of the equation x∆ = A(t)x, the
sufficient conditions on the stability of the equation x∆ = A(t)x, where matrix A(·)
is bounded or is a constant matrix, and specially, the spectrum condition for the ex-
ponential stability of this equation.

The Bohl exponent has been successfully used to characterize exponential stability

1Bohl P. (1913), Uber Differentialungleichungen, J.F.d. Reine Und Angew. Math., 144, 284–133.
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and to derive robustness results for ordinary differential equations (ODEs), see, e.g.
Daleckii and Krein (1974), Hinrichsen et al. (1989). In Chyan et al. (2008), the au-
thors generalized several results of the ODE concerning the Bohl exponent to linear
differential-algebraic equations (DAEs) with index-1, E(t)ẋ = A(t)x + f (t), where
E(·) is supposed to be singular. In 2009, Linh and Mehrmann investigated Bohl spec-
tral interval and Bohl exponent of particular solution and fundamental solution ma-
trices of DAEs. However, the Bohl exponent of linear systems does not lie in both
articles’ focus, Chyan et al. (2008), Linh and Mehrmann (2009). In Berger’s article
(2012), the author developed the theory of Bohl exponents for linear time-varying
differential-algebraic equations. The results of this paper are the generalizations of
ODE results in Daleckii and Krein (1974), Hinrichsen et. al. (1989) and the others to
DAEs. Recently, in 2016, Du et al. introduced the concept of Bohl exponents and char-
acterized the relationship between the exponential stability and the Bohl exponent
of linear singular systems of difference equations with variable coefficients.

The dissertation will introduce the Bohl exponent of implicit dynamic equations
(IDEs) on time scale

Eσ(t)x∆ = A(t)x,

and characterize the relation between the exponential stability and the Bohl expo-
nent. Some results are obtained, such as the solution formula of linear time-varying
IDEs Eσ(t)x∆ = A(t)x + f (t); the robust stability of IDEs subject to Lipschitz pertur-
bations in Theorem 3.10, and the Bohl-Perron type stability theorem for these equa-
tions in Theorem 3.14; the concept of Bohl exponent and the relationship among the
exponential stability, the Bohl exponent of equations Eσ(t)x∆ = A(t)x and solutions
of the respective Cauchy problem is derived, Theorem 3.23; the robustness of Bohl
exponent when equations are subject to perturbations acting on the coefficients in
Theorems 3.26 and 3.27.

The rest problem studied in the dissertation is the robust stability of IDEs on time
scales. We know that, the stability radius of differential-algebraic or implicit differ-
ence equations is a subject that has attracted the attention of researchers. There have
been many published works. However, results for the stability radius of time-varying
systems are few. The concept of stability radius of linear time-varying systems is in-
troduced in Hinrichsen et al. (1992),

rC(I, A; B, C) = inf
{
‖Σ‖L∞ , Σ ∈ PCb(R+, Cm×q)
and (I, A; B, C) is not exponential stable

}
,

and the first stability radius formula is derived in Jacob’s article (1998),

rK(I, A; B, C) = sup
t0≥0

‖Lt0‖−1.

In 2006, Du and Linh investigated the stability radius of linear time-varying DAEs
having index-1 and obtained the stability radius formula,

rK(E, A; B, C) = min

{
sup
t0≥0

‖Lt0‖−1, ‖L̃0‖−1

}
.
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In 2009, Rodjanadid et al. studied and derived the stability radius formula of linear
time-varying implicit difference equation with index-1,

rK(E, A; B, C) = min

{
sup
n0≥0

‖Ln0‖−1, ‖L̃0‖−1

}
.

In 2014, Berger derived some lower bounds for the stability radii of time-varying
DAEs of index-1 under unstructured perturbations acting on the coefficient of deriva-
tive,

r(E, A) ≥


min{l(E,A),‖QG−1‖−1

∞ }
κ1+κ2 min{l(E,A),‖QG−1‖−1

∞ }
if Q 6= 0,

l(E,A)
κ1+κ2l(E,A) , if Q = 0 and l(E, A) < ∞,
1
κ2

, if Q = 0 and l(E, A) = ∞.

The dissertation will investigate the stability, robust stability of linear time-varying
IDEs on time scales Eσ(t)x∆(t) = A(t)x(t) + f (t), the corresponding homogeneous
form Eσ(t)x∆(t) = A(t)x(t). We have investigated generally the robust stability for
linear time-varying IDEs on time scales, and have also obtained some derived results,
such as the formula of structured stability radius of IDEs with respect to dynamic
perturbations, Theorem 4.9, and a lower bound, Corollary 4.13; the lower bounds for
the stability radius involving structured perturbations acting on both sides, Theo-
rem 4.20, and Corollary 4.22. Many previous results for the stability radius of time-
varying differential, difference equations, differential-algebraic equations and im-
plicit difference equations are also extended, Remarks 4.10, 4.11, 4.14, and 4.15.

The dissertation was completed at Hanoi Pedagogical University 2, Course 2015 -
2019 and presented at the seminar of the Faculty of Mathematics, HPU2. The results
of dissertation were reported at

1. Vietnam - Korea Joint Workshop on Dynamical Systems and Related Topics
(Vietnam Institute for Advanced Study in Mathematics, Hanoi, Vietnam, March
02-05, 2016);

2. the 2nd Pan-Pacific International Conference on Topology and Applications
(Pusan National University, Busan, Korea, November 13-17, 2017);

3. the 9th Vietnam Mathematical Congress (Vietnamese Mathematical Society,
Nhatrang, Vietnam, August 14-18, 2018); and

4. International Conference Differential Equations and Dynamical Systems (Hanoi
Pedagogical University 2 and Institue of Mathematics - Vietnam Academy of
Science and Technology, Vinhphuc, September 05-07, 2019).
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CHAPTER 1

PRELIMINARIES

In this chapter, we introduce some basic concepts about the theory of analysis on
time scales to study the stability and robust stability of dynamic equations. In 1988,
the theory of analysis on time scales was introduced by Stefan Hilger in his Ph.D.
dissertation in order to unify and extend continuous and discrete calculus. The con-
tent in Chapter 1 is referenced from Bohner M. and Peterson A. (2001), Bohner &
Peterson (2003) and the material therein.

1.1 Time Scale and Calculations

1.1.1 Definition and Example

The time scale denoted by T is an arbitrary, nonempty, closed subset of the set of real
numbers R. We assume throughout that time scale T has a topology that inherited
from the set of real numbers with the standard topology.

Definition 1.2 (Bohner & Peterson (2001), page 1). Let T be a time scale. For all t ∈ T,

i) the forward operator σ : T → T by σ(t) := inf{s ∈ T : s > t},

ii) the backward operator $ : T → T by $(t) := sup{s ∈ T : s < t}, and

iii) the graininess function µ : T → [0, ∞) by µ(t) = σ(t)− t.

We define the so-called set Tκ as follows: Tκ =

{
T\($(sup T), sup T] if sup T < ∞,
T if sup T = ∞.

Definition 1.4 (Bohner & Peterson (2001), page 2). A point t ∈ T is said to be left-
dense if t > inf T and $(t) = t; right-dense if t < sup T and σ(t) = t, and dense if t
is simultaneuosly right-dense and left-dense; left-scattered if $(t) < t; right-scattered if
σ(t) > t, and isolated if t is simultaneuosly right-scattered and left-scattered.

If f : T → R is a function, then fσ : T → R is a function defined by fσ(t) :=
f (σ(t)) for all t ∈ T, i.e., fσ = f ◦ σ. Fix t0 ∈ T and set Tt0 := [t0, ∞) ∩T.
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1.1.2 Differentiation

Definition 1.7 (Bohner & Peterson (2001), page 5). A function f : T → R is called
delta differentiable at t if there exists a function f ∆(t) such that for all ε > 0,

| f (σ(t))− f (s)− f ∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|,

for all s ∈ U = (t − δ, t + δ) ∩ T and for some δ > 0. The function f ∆(t) is called
the delta (or Hilger) derivative of f at the point t. When f is also called delta (or Hilger)
differentiable on Tκ. We use words derivative, differentiable to replace words delta deriva-
tive, delta differentiable if it is not confused.

1.1.3 Integration

Definition 1.16 (Bohner & Peterson (2001), page 22). A function f : T → R is called
regulated provided its right-sided limits exist (finite) at all right-dense points in T and
its left-sided limits exist (finite) at all left-dense points in T; rd-continuous provided
it is continuous at right-dense points in T and its left-sided limits exist (finite) at
left-dense points in T.

The set of rd-continuous functions f : T → R will be denoted by Crd = Crd(T) =
Crd(T, R). The set of functions f : T → R that are differentiable and whose deriva-
tive is rd-continuous will be denoted by C1

rd = C1
rd(T) = C1

rd(T, R). The set of
rd-continuous functions defined on the interval J and valued in X is denoted by
Crd(J, X).

Definition 1.17 (Bohner & Peterson (2001), page 22). A continuous function f : T →
R is called pre-differentiable with (region of differentiation) D, provided D ⊂ Tκ,
Tκ\D is countable and contains no right-scattered element of T, and f is differen-
tiable at each t ∈ D.

Definition 1.20 (Guseinov (2003)). Assume f : T → R is a regulated function.

i) The function F is called a pre-antiderivative of f if F∆(t) = f (t), ∀ t ∈ D.

ii) The indefinite integral of f is defined by
∫

f (t)∆t = F(t) + C, where C is an

arbitrary constant and F is a pre-antiderivative of f .

iii) The Cauchy integral of f is defined by
∫ b

a
f (t)∆t = F(b)− F(a), ∀a, b ∈ T, where

F is a pre-antiderivative of the function f .

iv) A function F : T → R is called an antiderivative of f : T → R provided F∆(t) =
f (t) holds for all t ∈ Tκ.

Theorem 1.25 (Bohner & Peterson (2003), page 46). Let a ∈ Tκ, b ∈ T and suppose
f : T× Tκ → R is continuous at (t, t), where t ∈ Tκ, t > a. Also assume that f ∆(t, ·)
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is rd-continuous on the interval [a, σ(t)]. Also suppose that f (·, τ) is delta differentiable for
each τ ∈ [a, σ(t)]. Suppose that for every ε > 0, there exists a neighbourhood U of t such that
| f (σ(t), τ)− f (s, τ)− f ∆(t, τ)(σ(t)− s)| ≤ ε|σ(t)− s|, for all s ∈ U, where f ∆ denotes
the derivative of f with respect to the first variable. Then

g(t) :=
∫ t

a
f (t, τ)∆τ implies g∆(t) = f (σ(t), t) +

∫ t

a
f ∆(t, τ)∆τ.

1.1.4 Regressivity

Definition 1.26 (Bohner & Peterson (2003), page 10). A function p : T → R is called
regressive, if 1 + µ(t)p(t) 6= 0, for all t ∈ Tκ; positively regressive, if 1 + µ(t)p(t) > 0,
for all t ∈ Tκ; and uniformaly regressive, if there exists a number δ > 0 such that
|1 + µ(t)p(t)| ≥ δ, for all t ∈ Tκ.

Denote R = R(T, R) (resp. R+ = R+(T, R)) the set of regressive (resp., positively
regressive) functions on time scale T.

1.2 Exponential Function

Definition 1.33 (Bohner & Peterson (2001), page 59). If p(·) ∈ R, then the exponen-
tial function on the time scale T is define by

ep(t, s) = exp
(∫ t

s
ξµ(τ)(p(τ))∆τ

)
for all s, t ∈ T,

where the cylinder transformation ξh(z) is defined by ξh(z) :=

{
Log(1+zh)

h if h > 0,
z if h = 0,

1.3 Dynamic Inequalities

Lemma 1.36 (Gronwall-Bellman’s Lemma, Bohner & Peterson (2001), page 257). Let
y ∈ Crd(T, R) and k ∈ R+(T, R), k ≥ 0, α ∈ R. Assume that y(t) satisfies the inequality

y(t) ≤ α +
t∫

t0

k(s)y(s)∆s, for all t ∈ T, t ≥ t0. Then, y(t) ≤ αek(t)(t, t0) holds for all

t ∈ T, t ≥ t0.

Theorem 1.39 (Hölder’s Inequality, Bohner & Peterson (2001), page 259). Let a, b ∈ T.
For rd-continuous functions f , g : (a, b) → R, p > 1 and 1

p + 1
q = 1, we have

∫ b

a
| f (t)g(t)|∆t ≤

{∫ b

a
| f (t)|p∆t

} 1
p
{∫ b

a
|g(t)|q∆t

} 1
q

,
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1.4 Linear Dynamic Equation

Let A : Tκ → Rn×n be rd-continuous and consider the n-dimensional linear dynamic
equations x∆ = A(t)x for all t ∈ T.

Theorem 1.42 (Hilger (1990)). Assume that A(·) is rd-continuous matrix valued function.
Then, for each t0 ∈ Tκ, the initial value problem

x∆ = A(t)x, x(t0) = x0 (1.1)

has a unique solution x(·) defined on t ≥ t0. Moreover, if A(·) is regressive then this solution
defines on t ∈ Tκ.

The solution of Equation (1.1) is called Cauchy operator, or the matrix exponential func-
tion and denoted by ΦA(t, t0) or Φ(t, t0).

Theorem 1.44 (Bohner & Peterson (2001), page 195). Let A : Tκ → Rm×m be regressive
and f : Tκ ×Rm → Rm be rd-continuous. If x(t), t ≥ t0, is a solution of dynamic equation
x∆ = A(t)x + f (t, x), x(t0) = x0, then we have

x(t) = ΦA(t, t0)x0 +
t∫

t0

ΦA(t, σ(s)) f (s, x(s))∆s, t ≥ t0.

1.5 Stability of Dynamic Equation

Let T be a time scale, t0 ∈ T. Consider dynamic equation of the form

x∆ = f (t, x), x(t0) = x0 ∈ Rm, t ∈ T, (1.2)

where f : T×Rm → Rm is rd-continuous. If f (t, 0) = 0, then Equation (1.2) has the
trivial solution x ≡ 0. Denote by x(t; t0, x0) the solution of Cauchy problem (1.2).

Definition 1.45 (DaCunha (2005a), Hilger (1990)). The trivial solution x ≡ 0 of dy-
namic equation (1.2) is said to be exponentially stable if there exist a positive constant
α with −α ∈ R+ and a positive number δ > 0 such that for each t0 ∈ T there exists
an N = N(t0) > 0 for which, the solution of (1.2) with the initial condition x(t0) = x0
satisfies ‖x(t; t0, x0)‖ ≤ N‖x0‖e−α(t, t0), for all t ≥ t0, t ∈ T and ‖x0‖ < δ.

Definition 1.46 (Gard et.al. (2003)). The trivial solution x ≡ 0 of dynamic equation
(1.2) is said to be exponentially stable if there exist a positive constant α and a positive
number δ > 0 such that for each t0 ∈ T, there exists an N = N(t0) > 0 for which,
the solution of (1.2) with the initial condition x(t0) = x0 satisfies ‖x(t; t0, x0)‖ ≤
N‖x0‖e−α(t−t0), for all t ≥ t0, t ∈ T and ‖x0‖ < δ.

If the constant N can be chosen independently of t0 ∈ T then the solution x ≡ 0 of
(1.2) is called uniformly exponentially stable.

Theorem 1.47 (Lan & Liem (2010)). On the time scales with bounded graininess, Defini-
tion 1.46 is equivalent to Definition 1.47.
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CHAPTER 2

LYAPUNOV EXPONENTS
FOR DYNAMIC EQUATIONS

In this chapter, we will study the first Lyapunov method for dynamic equations on
time scales with a suitable approach. The content of chapter 2 is based on paper No.1
in list of the author’s scientific works.

Since it is not able to define the logarithm function on time scales (Bohner (2005)), we
use the oscillation of the ratio | f (t)|

eα(t,t0)
as t → ∞ in the parameter α to define Lyapunov

exponent of the function f on a time scale with a certain parameter α.

Let T be unbounded above time scale, i.e., sup T = ∞, and the graininess µ(t) is
bounded on T, i.e., there exists a number µ∗ = supt∈T µ(t) < ∞. This is equivalent to
the existence of positive numbers m1, m2 such that for every element t ∈ T, there ex-
ists a quantity that depends on t, c = c(t) ∈ T, satisfying the condition m1 ≤ c− t <
m2, see Pötzsche (2004). Furthermore, by definition, if α ∈ R ∩ R+ then α > − 1

µ(t)

for all t ∈ T. Consequently, we have inf(R∩R+) = − 1
µ∗ , supplemented by 1

0 = ∞.

2.1 Lyapunov Exponent: Definition and Properties

2.1.1 Definition

Definition 2.1. Lyapunov exponent of the function f defined on time scale Tt0 , valued
in K, is a real number a ∈ R+ such that for all arbitrary numbers ε > 0, we have

lim
t→∞

| f (t)|
ea⊕ε(t, t0)

= 0, (2.1)

lim sup
t→∞

| f (t)|
ea	ε(t, t0)

= ∞. (2.2)

The Lyapunov exponent of function f is denoted by κL[ f ].
If (2.1) is true for all a ∈ R ∩ R+ then we say by convention that f has left extreme
exponent, κL[ f ] = − 1

µ∗ = inf(R ∩R+). If (2.2) is true for all a ∈ R ∩R+, we say that
the function f has right extreme exponent, κL[ f ] = +∞. If κL[ f ] is neither left extreme
exponent nor right extreme exponent, then we call κL[ f ] by normal Lyapunov exponent.
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Lemma 2.2. Let f : Tt0 → K be a function. Then, f has a normal Lyapunov exponent if
and only if there exist two real numbers λ, γ ∈ R+ with λ 6= inf(R∩R+) such that

lim
t→∞

| f (t)|
eγ(t, t0)

= 0; lim sup
t→∞

| f (t)|
eλ(t, t0)

= ∞. (2.3)

Remark 2.3. i) In case T = R, Definition 2.1 leads to the classical one of Lyapunov
exponent, i.e., κL[ f ] = χ[ f ] = lim sup

t→∞

ln | f (t)|
t .

ii) In case T = Z, we can see directly that ln (1 + κL [ f ]) = lim sup
n→∞

ln | f (n)|
n = χ [ f ] .

Furthermore, the left extreme exponent is inf(R∩R+) = −1.

2.1.2 Properties

We always suppose that f , g : Tt0 → K are the functions.

Lemma 2.4. The following assertions hold true:

i) κL[| f |] = κL[ f ];

ii) κL[0] = inf(R∩R+) (left extreme exponent);

iii) κL[c f ] = κL[ f ], where c 6= 0 is a constant;

iv) If a ∈ R ∩ R+ and (2.1) is satisfied for any ε > 0 then κL[ f ] ≤ a. Similarly, if
a ∈ R∩R+ and (2.2) holds for any ε > 0 then κL[ f ] ≥ a;

v) If | f (t)| ≤ |g(t)| for all t large enough, then κL[ f ] ≤ κL[g];

vi) If f is bounded from above (resp. from below) then κL[ f ] ≤ 0 (resp. κL[ f ] ≥ 0). As a
consequence, if f is bounded then κL[ f ] = 0.

Lemma 2.5. For any λ ∈ R∩C, the following assertions hold true.

i) κL[eλ(·, t0)] = κL[e<̂λ
(·, t0)];

ii) κL[eλ(·, t0)] does not depend on t0;

iii) If q(·) ∈ R+ then κL[eq(·, t0)]≤ lim supt→∞ q(t);

iv) κL[eλ(·, t0)]≤ lim supt→∞ <̂λ(t)≤|λ|;

v) <λ≤ lim inft→∞ <̂λ(t)≤κL[eλ(·, t0)].

Lemma 2.7. κL[ f + g] ≤ max{κL[ f ], κL[g]} and if κL[ f ] 6= κL[g] then the equality holds.

Lemma 2.9. κL[ f g] ≤ κL[eκL[ f ]⊕κL[g](·, t0)].
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Definition 2.10. The function f is said to have exact Lyapunov exponent α if

lim
t→∞

| f (t)|
eα⊕ε(t, t0)

= 0 and lim
t→∞

| f (t)|
eα	ε(t, t0)

= ∞, for any ε > 0.

Lemma 2.11. If at least one of the functions f and g has exact Lyapunov exponent, then

κL[ f g] = κL[eκL[ f ]⊕κL[g](·, t0)].

Remark 2.12. In case both f and g have exact Lyapunov exponents, then so does
the function f g, and κL[ f g] = κL[eκL[ f ]⊕κL[g](·, t0)]. Generally, if all of the functions
f1, f2, ..., fm have exact Lyapunov exponents then the function f1 f2 · · · fm does, too,
and κL[ f1 f2 · · · fm] = κL[eκL[ f1]⊕κL[ f2]⊕···⊕κL[ fm](·, t0)].

Remark 2.13. i) In case T = R, κL[ f g] ≤ κL[eκL[ f ]⊕κL[g](·, t0)] = κL[ f ] + κL[g].

ii) In case T = Z, κL[ f g] ≤ κL[eκL[ f ]⊕κL[g](·, t0)] = κL[ f ] + κL[g] + κL[ f ]κL[g] (or
equivalently, χ[ f g] ≤ χ[ f ] + χ[g]).

2.2 Lyapunov Exponents of Solutions of Linear Equation

2.2.1 Lyapunov Spectrum of Linear Equation

Consider the linear equation
x∆ = A(t)x, (2.4)

where A(t) is a regressive and rd-continuous n × n-matrix on time scale T. It is
known that Eq. (2.4) with the initial value x(t0) = x0 has an unique solution x(t) =
x(t; t0, x0) on T.

Theorem 2.15. Let M = lim supt→∞ ‖A(t)‖. If x(·) is a nontrivial solution of Eq. (2.4),
then κL[x(·)] ≤ M. Furthermore, if lim supt→∞ µ(t) < 1

M , then the appreciation −M ≤
κL[x(·)] ≤M holds.

In case T = R, we get a popular inequality −M ≤ κL[x(·)] = χ[x(·)] ≤M.

Definition 2.17. The set of all finite Lyapunov exponents of solutions of Eq. (2.4) is
called the Lyapunov spectrum of this equation.

Theorem 2.18. The Lyapunov spectrum of Eq. (2.4) has n distinct values at most.

2.2.2 Lyapunov Inequality

Let {x1(t), x2(t), ..., xn(t)} be a system of regular fundamental solutions of Eq. (2.4),
i.e., the system of these solutions has properties: The Lyapunov exponent of solutions
combined from some arbitrary solutions of this system will be equal to the Lyapunov
exponent of a solution attending in the combination. In other words, if

x(t) = k1x1(t) + k2x2(t) + · · ·+ knxn(t),
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then κL[x(·)] = κL[xi(·)] with some i ∈ {1, . . . , n}.

Denote by S = {α1, α2, . . . , αn|α1 ≤ α2 ≤ · · · ≤ αn} the set of Lyapunov spectrum of
Eq. (2.4). In addition, we suppose that αi ∈ R∩R+, for all i = 1, 2, ..., n.

Theorem 2.19 (Lyapunov’s Inequality). κL[eα(·, t0)] ≤ κL[eα1⊕α2⊕...⊕αn(·, t0)].
Note that, the case T = R, we have

κL[eα(·, t0)] = lim sup
t→∞

1
t− t0

∫ t

t0

(trace A(s))ds,

and
κL [eα1⊕···⊕αn(·, t0)] = α1 + · · ·+ αn.

Thus, we get the Lyapunov inequality for ordinary differential equations in Malkin
(1958).

We consider Eq. (2.4), where A(t) ≡ A is a constant and regressive n× n-matrix. Let
λi, i = 1, 2, ..., n be the eigenvalues of matrix A. It is easy to verify that

α(t) = λ1 ⊕ λ2...⊕ λn(t). (2.5)

Theorem 2.22. If for any eigenvalue λi of matrix A, the exponential function eλi(·, t0)
has the exact Lyapunov exponent, then κL[eα(·, t0)] = κL[eα1⊕α2⊕...⊕αn(·, t0)], where αi =
κL[eλi(·, t0)], i = 1, 2, ..., n.

2.3 Lyapunov Spectrum and Stability of Linear Equation

Consider the equation
x∆ = A(t)x, (2.6)

where A(t) is a regressive, rd-continuous n× n-matrix, ‖A(t)‖ ≤ M, for all t ∈ Tτ.

Theorem 2.24. Consider Eq. (2.6) with the stated conditions on A(·). Then,

i) Eq. (2.6) is exponentially asymptotically stable if and only if there exists a constant
α > 0 with −α ∈ R+ such that for every t0 ∈ Tτ, there is a number N = N(t0) ≥ 1
such that

‖ΦA(t, t0)‖ ≤ Ne−α(t, t0) for all t ≥ t0, t ∈ Tτ.

ii) Eq. (2.6) is uniformly exponentially asymptotically stable if and only if there exist con-
stants α > 0, N ≥ 1 with −α ∈ R+ such that

‖ΦA(t, t0)‖ ≤ Ne−α(t, t0) for all t ≥ t0, t, t0 ∈ Tτ.

We give the spectral condition for exponential stability.

Theorem 2.25. Let −α := max S, where S is the set of Lyapunov spectrum of Eq. (2.6).
Then, Eq. (2.6) is exponentially asymptotically stable if and only if α > 0.
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We now consider the following equation

x∆ = Ax. (2.7)

where A is a regressive constant matrix. Denote the set of all eigenvalues of the ma-
trix A by σ(A). From the regressivity of the matrix A, it follows that σ(A) ⊂ R.

Theorem 2.26. If Eq. (2.7) is exponentially asymptotically stable then κL[eλ(·, t0)] < 0, for
all λ ∈ σ(A). In addition, suppose that every eigenvalue λ ∈ σ(A) is uniformly regressive.
Then, the assumption κL[eλ(·, t0)] < 0 implies that Eq. (2.7) is exponentially asymptotically
stable.

Corollary 2.27. If for any eigenvalue λ ∈ σ(A) we have =λ 6= 0 and κL[eλ(·, t0)] < 0,
then Eq. (2.7) is exponentially asymptotically stable.

Theorem 2.28. Suppose that lim supt→∞ <̂λ(t) < 0 for all λ ∈ σ(A). Then, Eq. (2.7) is
exponentially asymptotically stable.

Corollary 2.29. If σ(A) ⊂ (−∞, 0) ∩ R+ then Eq. (2.7) is exponentially asymptotically
stable.

Example 2.30. Considering Eq. x∆(t) = Ax(t) on time scale T = ∪∞
k=0[2k, 2k + 1],

with

A =
1
24

−24 0 48
1 −24 24
33 −72 −48

 .

It is clear that

µ(t) =

{
0 if t ∈ ∪∞

k=0[2k, 2k + 1),
1 if t ∈ ∪∞

k=0{2k + 1},

the left extreme exponent is −1. Further, σ(A) =
{
−2,−1 + 1

2 i,−1− 1
2 i

}
and all

λ ∈ σ(A) are uniformly regressive.

i) In case λ1 = −2, t ∈ [2k, 2k + 1], we have κL[e−2(·, 0)] ≤ κL[e− 1
2
(·, 0)] = −1

2 < 0.

ii) In case λ2 = −1 + i
2 , we have κL[eλ2(·, 0)] ≤ lim supt→∞ <̂λ2(t) = 1√

2
− 1 < 0.

iii) In case λ3 = −1− i
2 , we get κL[eλ3(·, 0)] ≤ lim supt→∞ <̂λ3(t) = 1√

2
− 1 < 0.

Therefore, by Theorem 2.23, the equation is exponentially asymptotically stable.

Make a note that the equation x∆(t) = −2x(t), t ∈ T = ∪∞
k=0[2k, 2k + 1] is exponen-

tially asymptotically stable, meanwhile

lim sup
t→∞

<̂(−2)(t) = 0.

This indicates that, in general, the inverse of Theorem 2.23 is not true.
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CHAPTER 3

BOHL EXPONENTS
FOR IMPLICIT DYNAMIC EQUATIONS

Consider linear time-varying IDE of the form

Eσ(t)x∆(t) = A(t)x(t), t ≥ 0, (3.1)

where Eσ(·), A(·) are continuous matrix funtions, Eσ(·) is supposed to be singular.
If Eq. (3.1) is subject to an external force f (t), then it becomes

Eσ(t)x∆(t) = A(t)x(t) + f (t), t ≥ 0. (3.2)

We will introduce the concept of Bohl exponent of linear time-varying IDEs with
index-1 and investigate the relation between the exponential stability and Bohl ex-
ponent as well as the robustness of Bohl exponent. The content of Chapter 3 is based
on the papers No.2 and No.3 in list of the author’s works.

3.1 Linear Implicit Dynamic Equations with index-1

Consider linear time-varying IDE (3.2) for all t ≥ a > 0, where A, Eσ are in Lloc
∞ (Ta; Kn×n).

Assume that rank E = r, 1 ≤ r < n, for all t ∈ Ta and ker E is smooth in the sense
that there exists a projector Q onto ker E such that Q is continuously differentiable
for all t ∈ (a, ∞), Q2 = Q and Q∆ ∈ Lloc

∞ (Ta; Kn×n). Set P = I − Q, P is a projector
along ker E, EP = E. Then, Eq. (3.2) can be rewritten

Eσ(t)(Px)∆(t) = Ā(t)x(t) + f (t), t ≥ a, Ā := A + EσP∆ ∈ Lloc
∞ (Ta; Kn×n). (3.3)

Let H be a function taking values in the group Gl(Rn) such that H|ker Eσ
is an isomor-

phism between ker Eσ and ker E. Set G := Eσ − ĀHQσ, and S := {x : Ax ∈ im Eσ}.

Lemma 3.2 (Du et al. (2007)). Suppose that the matrix G is nonsingular.

i) Pσ = G−1Eσ; ii) G−1ĀHQσ = −Qσ;

iii) Q̃ := −HQσG−1Ā is the projector onto ker E along to S, Q̃ is a canonical projector;

iv) If Q̂ is a projector onto ker E, P̂ = I − Q̂, then PσG−1Ā = PσG−1ĀP̂, QσG−1Ā =
QσG−1ĀP̂− H−1Q̂;
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v) The matricies PσG−1, HQσG−1 does not depend on the choice of H and Q.

Definition 3.4. The IDE (3.2) is said to be index-1 tractable on Ta if G(t) is invertible
for almost t ∈ Ta and G−1 ∈ Lloc

∞ (Ta; Kn×n).

Let J ⊂ T be an interval. We denote the set

C1(J, Kn) := {x(·) ∈ Crd(J, Kn) : P(t)x(t) is delta differentiable, almost t ∈ J} .

Definition 3.6. The function x is said to be a solution of Eq. (3.2) (having index-1) on
the interval J if x ∈ C1(J, Kn) and satisfies Eq. (3.2) for almost t ∈ J.

Multiplying both sides of Eq. (3.3) by PσG−1 and QσG−1 and using variable changes
u := Px and v := Qx, Eq. (3.3) is decomposed into two sub-equations

u∆ = (P∆ + PσG−1Ā)u + PσG−1 f , (3.4)

v = HQσG−1Āu + HQσG−1 f , (3.5)

(3.4) is called the delta-differential part and (3.5) the algebraic one. We can solve u
from Eq. (3.4), get v from (3.5), and x = u + v. The solution of (3.2) is

x(t) = Φ(t, t0)P(t0)x0 +
∫ t

t0

Φ(t, σ(s))Pσ(s)G−1(s) f (s)∆s + H(t)Qσ(t)G−1(t) f (t).

3.2 Stability of IDEs under non-Linear Perturbations

Let a ∈ T be a fixed point. In case the external force f (t) := F(t, x(t)), where F is a
certain function defined on Ta ×Rn, then Eq. (3.2) is rewritten as follows

Eσ(t)x∆(t) = A(t)x(t) + F(t, x(t)), t ≥ a. (3.6)

Let F(t, 0) = 0 for all t ∈ Ta. So, Eq. (3.6) has the trivial solution x(t) ≡ 0. As before,
denoting u = Px and v = Qx comes to

u∆ = (P∆ + PσG−1Ā)u + PσG−1F(t, u + v), (3.7)

v = HQσG−1Āu + HQσG−1F(t, u + v). (3.8)

Assume that HQσG−1F(t, ·) is Lipschitz continuous with Lipschitz coefficient γt <
1, i.e., ‖HQσG−1F(t, y)−HQσG−1F(t, z)‖ ≤ γt‖y− z‖, ∀t ≥ a. Since HQσG−1 does
not depend on the choice of H and Q, the Lipschitz property of HQσG−1F(t, ·) does,
too. Fix u ∈ Rn and choose t ∈ Ta, we consider a mapping Γt : im Q(t) → im Q(t)
defined by Γt(v) := H(t)Qσ(t)G−1(t)Ā(t)u + H(t)Qσ(t)G−1(t)F(t, u + v). It is easy
to see that ‖Γt(v)− Γt(v′)‖ ≤ γt‖v− v′‖ for any v, v′ ∈ im Q(t). Since γt < 1, Γt is
a contractive mapping. Hence, by the Fixed Point Theorem, there exists a mapping
gt : im P(t) → im Q(t) satisfying

gt(u) = H(t)Qσ(t)G−1(t)
(

Ā(t)u + F(t, u + gt(u))
)
. (3.9)
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Denoted by βt := ‖H(t)Qσ(t)G−1(t)Ā(t)‖, we get ‖gt(u)− gt(u′)‖ ≤ γt+βt
1−γt

‖u− u′‖.

Thus, gt is Lipschitz continuous with Lipschitz constant Lt = γt+βt
1−γt

. Substituting
v = gt(u) into (3.7) obtains

u∆ = (P∆ + PσG−1Ā)u + PσG−1F
(
t, u + gt(u)

)
. (3.10)

We can solve u(t) from Eq. (3.10). Therefore, the unique solution of (3.6) is

x(t) = u(t) + gt(u(t)), t ∈ Ta. (3.11)

Theorem 3.10. Assume that Equation (3.1) is of index-1, exponential stable and

i) L = supt∈Ta
Lt < ∞, and

ii) the function Pσ(t)G−1(t)F(t, x) is Lipschitz continuous with Lipschitz constant kt,
such that one of the following conditions hold

a) N =
∫ ∞

a

kt

1− αµ(t)
∆t < ∞.

b) lim supt→∞ kt(1 + Lt) = δ < α
LM , with α, M are positive and −α ∈ R+.

Then, there exist the constants K > 0 and positively regressive −α1 such that

‖x(t)‖ ≤ Ke−α1(t, s)‖P(s)x(s)‖,

for all t ≥ s ≥ a, where x(·) is a solution of (3.6). That is, the perturbed equation (3.6)
preserves the exponential stability.

Next, we prove the Bohl-Perron Theorem for linear IDEs, i.e., investigate the relation
between the boundedness of solutions of non-homogenous Eq. (3.2) and the expo-
nential stability of IDE (3.1).

Note that, in solving Eq. (3.2), the function f is split into two components PσG−1 f
and HQσG−1 f . Therefore, for any t0 ∈ Ta we consider f as an element of the set

L(t0) =

{
f ∈ C ([t0, ∞], Rn) : supt≥t0

‖H(t)Qσ(t)G−1(t) f (t)‖ < ∞
and supt≥t0

‖Pσ(t)G−1(t) f (t)‖ < ∞

}
.

It is easy to see that L(t0) is a Banach space eqiupped with the norm

‖ f ‖ = sup
t≥t0

(
‖Pσ(t)G−1(t) f (t)‖+ ‖H(t)Qσ(t)G−1(t) f (t)‖

)
.

Denote by x(t, s, f ) the solution, associated with f , of Eq. (3.2) with the initial con-
dition P(s)x(s, s) = 0. For notational convenience, we will write x(t, s) or x(t) for
x(t, s, f ) if there is no confusion.

Theorem 3.14. All solutions of Cauchy problem (3.2) with the initial condition P(t0)x(t0) =
0, associated with an arbitrary function f in L(t0), are bounded if and only if the index-1
IDE (3.1) is exponentially stable.
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Remark 3.15. The above results extended the Bohl-Perron type stability theorem with
bounded input/output for differential and difference equations, for differential al-
gebraic, and for implicit difference equations, in case T = R or T = Z, respectively.

Example 3.16. Consider the simple circuit on time
scales consists of a voltage source vV = v(t), a resis-
tor with conductance R and a capacitor with capac-
itance C > 0. As in Tischendorf (2000), this model
can be written in the form Eσx∆ = Ax + f , with
x =

[
e1 e2 iv

]T , f =
[
0 0 v

]T,

Eσ =

0 0 0
0 C 0
0 0 0

 , A =

−R R 1
R −R 0
1 0 0

 . It is easy to choose P, and H = I. We com-

pute G−1. This implies that ‖ f ‖ =
√

1 + R2(C2+1)
C2 ‖v‖. On the other hand, the spectral

set σ(Eσ, A) =
{
−R
C

}
. Therefore, if 1− µ(t)R

C > 0, or equivalently −R
C ∈ R+ then the

homogenous equation Eσx∆ = Ax is exponentially stable. By Theorem 3.14, if v is
bounded then e1, e2, iv are bounded.

3.3 Bohl Exponent for IDEs

3.3.1 Bohl Exponent: Definition and Property

Definition 3.17. Let the IDE (3.1) be index-1, Φ(t, s) be its Cauchy operator. Then,
the (upper) Bohl exponent of IDE (3.1) is defined by

κB(E, A) = inf{α ∈ R; ∃Mα > 0 : ‖Φ(t, s)‖ ≤ Mαeα(t, s), ∀t ≥ s ≥ t0}.

When κB(E, A) = − 1
µ∗ or κB(E, A) = +∞ we call Bohl exponent of IDE (3.1) is

extreme. In case T = R (or resp. T = hZ), we come to the classical definition of Bohl
exponents, and the extreme exponents may be ±∞ (resp. − 1

h or +∞). Further,

Proposition 3.18. If α = κB(E, A) is not extreme then for any ε > 0 we have

i) lim
t−s→∞

s→∞

‖Φ(t, s)‖
eα⊕ε(t, s)

= 0 ii) lim sup
t−s→∞

s→∞

‖Φ(t, s)‖
eα	ε(t, s)

= ∞.

Example 3.20. Set T =
∞⋃

k=0
{3k}

∞⋃
k=0

[3k + 1, 3k + 2], and consider Equation (3.1) with

E(t) =

1 1 0
0 0 0
0 0 0

 , A(t) =

p(t) p(t) 0
1 0 0
0 0 1

 , and p(t) =

{
−1

4 if t = 3k,
−1

2 if t ∈ [3k + 1, 3k + 2].

We can choose P, H = I and compute P̃, Φ0(t, s), Φ(t, s)... and κB(E, A) = −α.

Theorem 3.23. The following statements are equivalent:
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i) The IDE (3.1) is exponentially stable; ii) The Bohl exponent κB(E, A) is negative;

iii) The Bohl exponent κB(E, A) is finite and for any p > 0, there exists a positive constant
Kp such that

∫ ∞
s ‖Φ(t, s)‖p∆t ≤ Kp, ∀t ≥ s ≥ t0;

iv) All solutions of the Cauchy problem (3.2) with the initial condition P(t0)x(t0) = 0,
associated with f in L(t0) are bounded.

3.3.2 Robustness of Bohl Exponent

Suppose that Σ(·) ∈ Rn×n is a continuous matrix function. We consider the per-
turbed equation

Eσ(t)x∆(t) = (A(t) + Σ(t))x(t), ∀t ≥ t0. (3.12)

It is easy to see that, Eq. (3.12) is equivalent to

Eσ(t)(Px)∆(t) = (Ā(t) + Σ(t))x(t), ∀t ≥ t0. (3.13)

Eq. (3.12) is a special case of (3.6) with F(t, x) = Σ(t)x. Let perturbation Σ be suffi-
ciently small such that

sup
t≥t0

‖Σ(t)‖ <
(

sup
t≥t0

‖HQσG−1(t)‖
)−1

. (3.14)

By using (3.14) and the relation (I − ΣHQσG−1)−1GΣ = G, where GΣ := Eσ − (Ā +
Σ)HQσ, it is easy to see that GΣ is invertible if only if so is G. This means that Eq.
(3.2) is index-1 if and only if Eq. (3.13) is, too. By the same argument as before, we
can solve Eq. (3.13). Indeed, since the function HQσG−1Σ(t)x is Lipschitz continuous
with Lipschitz coefficient γt = ‖HQσG−1Σ(t)‖ < 1, the function gt defined by (3.9)
becomes gt(u) = (I − HQσG−1Σ(t))−1HPσG−1(Ā + Σ)(t)u. Then the solution of
(3.13) is x(t, s) = u(t, s) + gt(u(t, s)), where u(t, s) is the solution of the IVP{

u∆ = (P∆ + PσG−1Ā)u + PσG−1Σ(u + gt(u)),
u(s, s) = P(s)x0.

Theorem 3.26. Let PσG−1 and HQσG−1 be bounded above. Then, for any ε > 0 there
exists a number δ = δ(ε) > 0 such that the inequality lim supt→∞ ‖Σ(t)‖ ≤ δ implies
κB(E, A + Σ) ≤ κB(E, A) + ε.

We now consider equation Eσ(t)x∆(t) = A(t)x(t), for all t ≥ t0, subject to two-side
perturbations of the form(

Eσ(t) + Fσ(t)
)
x∆(t) =

(
A(t) + Σ(t)

)
x(t), ∀t ≥ t0, (3.15)

where Fσ(t) and Σ(t) are perturbation matrices, and ker(Eσ + Fσ) = ker Eσ. We can
prove that, Eq. (3.15) is equivalent to Eσ(t)x∆(t) =

(
A(t) + Σ̄(t)

)
x(t), ∀t ≥ t0.

Theorem 3.27. Let PσG−1 and HQσG−1 be bounded above. Then, for any ε > 0 there
exists a number δ = δ(ε) > 0 such that the inequality lim supt→∞ ‖Σ̄(t)‖ ≤ δ implies
κB(E + F, A + Σ̄) ≤ κB(E, A) + ε.
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CHAPTER 4

STABILITY RADIUS
FOR IMPLICIT DYNAMIC EQUATIONS

We will consider the robust stability of the system of linear time-varying IDE on time
scales,

Eσ(t)x∆(t) = A(t)x(t) + f (t), t ≥ t0, (4.1)

where Eσ(·) ∈ Lloc
∞ (T; Kn×n) is supposed to be singular for all t ∈ T, t ≥ t0. The ma-

trix A(·) ∈ Lloc
∞ (T; Kn×n), and ker A(·) is absolutely continuous. The corresponding

homogeneous equation is

Eσ(t)x∆(t) = A(t)x(t), t ≥ t0, (4.2)

The content of Chapter 4 is based on the paper No.2 in list of the author’s works.

Let X, Y be the finite-dimensional vector spaces. For every p ∈ R, 1 ≤ p < ∞ and s <
t, s, t ∈ Ta, denote by Lp([s, t]; X) the space of measurable functions f on the interval

[s, t] equipped with the norm ‖ f ‖p = ‖ f ‖Lp([s,t];X) :=
(∫ t

s ‖ f (τ)‖p ∆τ
) 1

p
< ∞, and by

L∞([s, t]; X) the space of measurable and essentially bounded functions f equipped
with the norm ‖ f ‖∞ = ‖ f ‖L∞([s,t];X) := ∆- esssupτ∈[s,t] ‖ f (τ)‖. We also consider the
spaces Lloc

p (Ta; X), Lloc
∞ (Ta; X), which contain all functions f restricted on [s, t], f |[s,t],

are in Lp([s, t]; X), L∞([s, t]; X), respectively, for every s, t ∈ Ta, a ≤ s < t < ∞. For
τ ≥ a, τ ∈ T, the operator of truncation πτ at τ on the space Lp(Ta; X) is defined by

πτ(u)(t) :=

{
u(t), t ∈ [a, τ],
0, t > τ.

Denote by L(Lp(Ta; X), Lp(Ta; Y)) for the Banach space of linear bounded operators
Σ from Lp(Ta; X) to Lp(Ta; Y) and the corresponding norm is defined by

‖Σ‖ := sup
x∈Lp(Ta;X), ‖x‖=1

‖Σx‖Lp(Ta;Y) .

The operator Σ ∈ L(Lp(Ta; X), Lp(Ta; Y)) is called to be causal if it satisfies

πtΣπt = πtΣ, for every t ≥ a.
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4.1 Stability of IDEs under Causal Perturbations

Consider the linear time-varying implicit dynamic equation (4.1), for all t ≥ a, and
the corresponding homogeneous equation

Eσ(t)x∆(t, t0) = A(t)x(t, t0), t ≥ a (4.3)

with initial condition P(t0)(x(t0, t0)− x0) = 0.

Let P(t), Q(t) be the projectors in Chapter 3, Eq. (4.1) comes to the form

Eσ(t)(Px)∆(t) = Ā(t)x(t) + f (t), t ≥ a, Ā := A + EσP∆ ∈ Lloc
∞ (Ta; Kn×n) (4.4)

Assumption 4.1. The IDE (4.3) is of index-1 and uniformly exponential stable in the sense
that there exist numbers M > 0, ω > 0 such that −ω is positively regressive and

‖Φ(t, s‖ ≤ Me−ω(t, s), t ≥ s, t, s ∈ Ta.

Assumption 4.2. There exists a bounded, smooth projector Q(t) onto ker E(t) such that the
terms PσG−1 and HQσG−1 are essentially bounded on Ta.

We consider Eq. (4.3) subject to structured perturbations of the form

Eσ(t)x∆(t) = A(t)x(t) + B(t)Σ
(
C(·)x(·)

)
(t), t ∈ Ta, (4.5)

where B ∈ L∞(Ta; Kn×m) and C ∈ L∞(Ta; Kq×n) are given matrices defining the
structure of perturbations, Σ : Lp(Ta; Kq) → Lp(Ta; Km) is an unknown disturbance
operator supposed to be linear, causal. Therefore, with perturbation Σ, Eq. (4.5) be-
comes an implicit functional DAE.

We define the linear operator G̃ from Lloc
p (Ta; Kn) to Lloc

p (Ta; Kn) which written for-
mally by G̃ = (I − BΣCHQσG−1)G.

Definition 4.3. Implicit functional differential-algebraic equation (4.5) is said to be
of index-1, in the generalized sense, if for any T > a, the operator G̃ restricted to
Lp([a, T]; Kn) has the bounded inverse operator G̃−1.

For any t0 ∈ Ta, we set up Cauchy problem for Eq. (4.5){
Eσ(t)x∆(t) = A(t)x(t) + B(t)Σ

(
C(·)[x(·)]t0

)
(t),

P(t0)(x(t0)− x0) = 0, ∀t ∈ Tt0 ,
(4.6)

where [x(t)]t0 =

{
0 if t ∈ [a, t0)
x(t) if t ∈ [t0, ∞)

. The Cauchy problem (4.6) admits a mild so-

lution if there exists an element x(·) ∈ Lloc
p (Tt0 ; Kn) such that for all t ≥ t0 we have

x(t) = Φ(t, t0)x0 +
∫ t

t0

Φ(t, σ(s))Pσ(s)G−1(s)B(s)Σ
(
C(·)[x(·)]t0

)
(s)∆s

+ H(t)Qσ(t)G−1(t)B(t)Σ
(
C(·)[x(·)]t0

)
(t).

(4.7)
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Now, we define operators:

(M̂t0u)(t) =
∫ t

t0

Φ(t, σ(s))Pσ(s)G−1(s)B(s)u(s)∆s,

(M̃t0u)(t) = H(t)Qσ(t)G−1(t)B(t)u(t), (Mt0u)(t) = (M̂t0u)(t) + (M̃t0u)(t).

Mt0 , M̂t0 ∈ L(Lp([t0, ∞); Km), Lp([t0, ∞); Kn)) and there exists a constant K0 ≥ 0
such that ‖(Mt0u)(t)‖ ≤ K0 ‖u‖Lp([t0,t];Km) , t ≥ t0 ≥ a, u|[t0,t] ∈ Lp([t0, t]; Km). De-
note by x(t; t0, x0) the (mild) solution of Cauchy problem (4.6). Then the formula (4.7)
can be rewritten in form

x(t; t0, x0) = Φ(t, t0)x0 +
(
Mt0Σ(C(·)[x(·; t0, x0)]t0)

)
(t).

Theorem 4.4. If Eq. (4.6) is of index-1, then it admits an unique mild solution x(·) with
P(·)x(·) to be absolutely continuous with respect to ∆-measure. Furthermore, for an arbitrary
number T > t0, there exist the positive constants M1 = M1(T), M2 = M2(T) such that

‖P(t)x(t)‖ ≤ M1 ‖P(t0)x0‖ , ‖x(t)‖Lp([t0,t];Kn) ≤ M2‖P(t0)x0‖, ∀t ∈ [t0, T].

Remark 4.5. Let the operator Σ ∈ L(Lp(Ta; Kq), Lp(Ta; Km)) be causal for all t > a
and h ∈ Lp([a, t]; Kq). Then, by applying Theorem 4.4, we see that the function g, de-
fined by g(s) := P(t)x(t; σ(s), h(s)), s ∈ [a, t], belongs to Lp([a, t]; Kn). Furthermore,
set y(t) :=

∫ t
s g(τ)∆τ then, by Theorem 1.27, we have y∆(t) = Pσ(t)h(t) + (Wy)(t),

where Wu := (P∆ + PσG−1Ā)u + PσG−1BΣC(I + D)[u]t0

4.2 Stability Radius under Dynamic Perturbations

Let Assumptions 4.1, 4.2 hold. The trivial solution of Eq. (4.5) is said to be globally
Lp-stable if there exist the positive constants M3, M4 such that for all t ≥ t0, x0 ∈ Kn

‖P(t)x(t; t0, x0)‖Kn ≤ M3 ‖P(t0)x0‖Kn ,
‖x(t; t0, x0)‖Lp(Tt0 ;Kn) ≤ M4 ‖P(t0)x0‖Kn . (4.8)

Definition 4.6. Let Assumptions 4.1, 4.2 hold. The complex (real) structured stability
radius of Eq. (4.2) subject to linear, dynamic and causal perturbations in Eq. (4.5) is

defined by rK(Eσ, A; B, C; T) = inf
{
‖Σ‖, the trivial solution of (4.5) is not
globally Lp-stable or (4.5) is not of index-1

}
.

For every t0 ∈ Ta, we define the following operators L̂t0u := C(·)M̂t0u, L̃t0u :=
C(·)M̃t0u, and Lt0u := C(·)Mt0u. The operator Lt0 is called a input-output operator
associated with the perturbed equation (4.5). It is clear that Lt0 , L̂t0 ∈ L

(
Lp(Tt0 ; Km),

Lp(Tt0 ; Kq)
)

and ‖Lt0‖, ‖L̂t0‖ are decreasing in t0. Furthermore,

‖L̃t0‖ = ∆- esssupt≥t0

∥∥∥CHQσG−1B
∥∥∥ ≤ ‖Lt0‖ .
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Since ‖Lt‖ is decreasing in t, there exists the limit ‖L∞‖ := limt→∞ ‖Lt‖. Denote

β := ‖L∞‖−1, γ := ‖L̃a‖−1, with the convention
1
0

= ∞. (4.9)

Lemma 4.8. Suppose that β < ∞ and α > β, where β is defined in (4.9). Then, there exist an
operator Σ ∈ L

(
Lp(Ta; Kq), Lp(Ta; Km)

)
, the functions ỹ, z̃ ∈ Lloc

p (Ta; Kq) and a natural
number N0 > 0 such that

i) ‖Σ‖ < α, Σ is causal and has a finite memory;

ii) Σh(t) = 0 for every t ∈ [0, N0] and all h ∈ Lp(Ta; Kq);

iii) ỹ ∈ Lloc
p (Ta; Kq) \ Lp(Ta; Kq) and supp z̃ ⊂ [0, N0];

iv) (I −LaΣ)ỹ = z̃.

Theorem 4.9. Let Assumptions 4.1, 4.2 hold. Then

rK(Eσ, A; B, C; T) = min{β, γ}, (4.10)

where β, γ are defined in (4.9).

Remark 4.10. In case T = R, the formula (4.10) gives a formula for the stability radius
in Du & Linh (2006), and in case T = Z we obtain the radius of stability formula in
Rodjanadid et al. (2009).

Remark 4.11. In case T = R and E = I, the formula (4.10) gives a formula of the
stability radius in Jacob (1998).

Example 4.12. Consider Eq. (4.3) with E =

1 1 0
0 0 0
0 0 0

 , A(t) =

p(t) p(t) 0
1 −1 0
0 0 1

 on

time scale T =
∞⋃

k=0
{3k}

∞⋃
k=0

[3k + 1, 3k + 2], where p(t) =

{
−1

2 if t = 3k,
−1

4 if t ∈ [3k + 1, 3k + 2].

It is easy to compute that P = P̃ =

1
2

1
2 0

1
2

1
2 0

0 0 0

 , H = I, G−1 =

1
2 −1

2 0
1
2

1
2 0

0 0 −1

 . Assume

that structured matrices B = C = I in the perturbed equation (4.5). Therefore, we
get ‖Lt0‖ = 8, ‖L̃t0‖ = 1. By Theorem 4.9 we obtain rK(Eσ, A; B, C; T) = 1

8 .

Let Σ ∈ L∞(Tt0 ; Km×q) be a linear, causal operator defined by (Σu)(t) = Σ(t)u(t).
Moreover, we have ‖Σ‖ = esssupt0≤t≤∞ ‖Σ(t)‖.

Corollary 4.13 Let Assumptions 4.1, 4.2 hold. Then, if rK(Eσ, A; B, C; T) > ‖Σ‖ then the
perturbed equation (4.5) is globally Lp-stable.

Remark 4.14. In case T = R and E = I and Σ(·) ∈ L∞(Rt0 ; Km×q), the above corol-
lary implies a lower bound for the stability radius in Hinrichsen et al. (1989).
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Remark 4.15. By the Fourier-Plancherel transformation technique as in Hinrichsen
& Pritchard (1986b) and Marks II et.al. (2008), if E, A, B, C are constant matrices and
p = 2 then we can prove the equality ‖Lt0‖ = supλ∈∂S ‖C(A− λE)−1B‖, where S is
the domain of uniform exponential stability of the time scale T,

S := {λ ∈ C : x∆ = λx is uniformly exponentially stable}.

Moreover, ‖L̃t0‖ = limλ→∞ ‖C(A − λE)−1B‖. Thus, we obtain the stability radius

formula in Du et al. (2011): r(E, A; B, C; T) =
1

supλ∈∂S∪∞ ‖C(A− λE)−1B‖ .

4.3 Stability Radius under Structured Perturbations on Both Sides

Now, in this section, we consider Eq. (4.2) subject to perturbations acting both deriva-
tive and right-hand side of the form

(Eσ + B1σΣ1σC1σ)(t)x∆(t) = (A + B2Σ2C2)(t)x(t), t ≥ t0. (4.11)

where Bi ∈ L∞(Tt0 ; Kn×m), Ci ∈ L∞(Tt0 ; Kq×n) are given matrices, Σi are perturba-
tions in L∞(Tt0 ; Km×q), for only i = 1, 2. We define the set of admissible perturba-
tions S = S(E; B1, C1) := {(Σ1, Σ2)| ker(E + B1Σ1C1) = ker(E)}.

Lemma 4.16. The following assertions hold

i) QσQ∆HQσ = 0; ii) QσQ∆P = Q∆; iii) I + Q∆HQσ is invertible;

iv) (I + Q∆HQσ)G−1 = (Eσ − AHQσ)−1, QσG−1 = Qσ(Eσ − AHQσ)−1.

Define Ā = A−EσQ∆, G := Eσ − ĀHQσ and B :=
[
B1σ B2

]
, Σb :=

[
Σ1σ 0

0 Σ2

]
.

Lemma 4.17. Assume that Eq. (4.2) is of index-1. If (Σ1, Σ2) ∈ S such that ‖Σb‖ < 1
‖FB‖ ,

then the perturbed equation (4.11) is also of index-1.

Lemma 4.18. Let Eq. (4.2) be of index-1. Then Eq. (4.5) is equivalent to Eq. (4.11) with the
perturbation Σ = (I + ΣbFB)−1Σb.

Definition 4.19. Let Assumptions 4.1, 4.2 hold. The complex (real) structured stabil-
ity radius of Eq. (4.2) subject to linear structured perturbations in Eq. (4.11) is defined
by

rK(Eσ, A; B1, C1, B2, C2; T) = inf
{

‖Σb‖, the trivial solution of (4.11) is not
globally Lp-stable or (4.11) is not of index-1

}
.

Theorem 4.20. Let Assumptions 4.1, 4.2 hold, and β, γ are defined in (4.9). The complex
(real) structured stability radius of Eq. (4.2) subject to linear structured perturbations in Eq.
(4.11) satisfies

rK(Eσ, A; B1, C1, B2, C2; T) ≥


min{β;γ}

1+‖FB‖min{β;γ} if β < ∞ or γ < ∞,
1

‖FB‖ if β = ∞ and γ = ∞.
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Example 4.21. Consider the IDE, Ex∆ = Ax, E =

1 0 0
0 1 0
0 0 0

 , A =

−1 1
2 0

1
2 −1 1
0 0 −1

 .

Assume that this equation is subject to structured perturbations E E, A A

E =

1 + δ1(t) δ1(t) δ1(t)
δ1(t) 1 + δ1(t) δ1(t)

0 0 0

 , A =

 −1 1
2 0

1
2 + δ2(t) −1 + δ2(t) 1 + δ2(t)

δ2(t) δ2(t) −1 + δ2(t)

 ,

where δi(t), i = 1, 2, are perturbations. It is easy to see that this model can be rewrit-

ten in form (4.11) with B1 =

1
1
0

 , B2 =

0
1
1

 , C1 = C2 =
[
1 1 1

]
. In this ex-

ample, we have P =

1 0 0
0 1 0
0 0 0

 , Q =

0 0 0
0 0 0
0 0 1

 . By simple computations, we get

B =

1 0
1 1
0 1

 , F =
[

1 1 0
0 0 −1

]
, C =

[
−1

2 −1
2 0

−1 −1 0

]
. Therefore ‖FB‖ = 3 and C(A −

λE)−1B =
1

(λ + 1)2 − 1
4

[
λ + 3

2 λ + 3
2

2λ + 3 2λ + 3

]
. Let T =

⋃∞
k=1[2k, 2k + 1]. Then, the do-

main of uniformly exponential stability S = {λ ∈ C : <λ + ln |1 + λ| < 1}. Using
Remark 4.15, we yield β = 1

8 , γ = +∞. Thus, by applying Theorem 4.20, we obtain

rK(Eσ, A; B1, C1, B2, C2; T) ≥ 1
11

.

Corollary 4.22. Let Assumptions 4.1, 4.2 hold. The complex (real) structured stability ra-
dius of Eq. (4.2) subject to linear unstructured perturbations E  E + Σ1, A  A + Σ2
satisfies

rK(Eσ, A; I; T) ≥


min{l(E,A),‖HQσG−1‖−1

∞ }
k1+k2 min{l(E,A),‖HQσG−1‖−1

∞ }
if Q 6= 0 or l(E, A) < ∞,

1
k2

if Q = 0 and l(E, A) = ∞.

with the convention ‖HQσG−1‖−1
∞ = ∞ if ‖HQσG−1‖∞ = 0.

Remark 4.23. In case T = R, this corollary is a result concerning the lower bound of
the stability radius in Berger (2014).

Example 4.24. Consider Eq. (4.3) with E, A, T in Example 4.12. Then, we can com-

pute. It is not difficult to imply ‖p‖∞ =
1
2

, k1 = k2 = 1. Hence, by Corollary 4.22, we
obtain

rK(Eσ, A; I; T) ≥
1
8

1 + 1
8

=
1
9

.
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CONCLUSIONS

The dissertation has achieved the following main results:

1. Introducing of the definition for Lyapunov exponent and using it to study the
stability of linear dynamic equations on time scales.

2. Establishing the robust stability of implicit dynamic equations with Lipschitz
perturbations, and extending Bohl-Perron type stability theorem for implicit
dynamic equations on time scales.

3. Suggesting the concept for Bohl exponent on time scales and studying the rela-
tion between exponential stability and the Bohl exponent when dynamic equa-
tions under perturbations acting on the system coefficients.

4. Recommending the radius of stability formula for implicit dynamic equations
on time scales under some structured perturbations acting on the right-hand
side or both side-hands.
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