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Introduction

1. Motivation

Plasmonics is a promising field and has attracted much interest of scientists over
the world in the revolution of science and nanotechnology. This field explores the
interactions between light and matter through surface plasmon resonance (SPR) for
a variety of properties and functions. SPR is the collective stimulation of charge
carriers (electrons) at the interface between two materials with positive and nega-
tive permittivities, typically a metal and a dielectric. Such electron oscillations can
propagate along an interface (Surface Plasmon Polariton, SPP) or be confined on
subwavelength regions (localized surface plasmon resonance, LSPR). Once excited,
all SPR forms can confine the incident electromagnetic field at a deep subwavelength
scale, resulting in a significant enhancement of the local field and allowing control
of light below the diffraction limit. SPR’s appeal makes plasmonic materials highly
applicable in a wide variety of fields, including photonics, chemistry, energy, and life
sciences. Specifically, there are applications such as biological and optical sensors,
drugs and disease treatments, metamaterials, nano-sized electronic chips (Intel chips
are now available to 14 nm), and quantum computer. As a result, over the past two
decades, scientific interest in plasmonic and SPR materials has intensified. The great
advances in nanotechnology in lithographic techniques and classical wet-chemistry
methods allow us to synthetically control the sizes, shapes, dimensions, and surface
topologies of plasmonic materials, often with nanometer precision. The fabrication
and measurement of experimental samples can be very simple in the conditions of
countries with advanced science and technology. But for developing countries, es-
pecially Vietnam, the experimental steps take a lot of effort and money. In the
extremely limited situation in Vietnam, the theoretical models combining with sim-
ulations predicting experimental measurements and suggesting new applications for
nanostructures are very important and this is the main research purpose of this the-
sis. The theoretical models in this thesis also create a bridge to connect theory and
experiments, which is in shortage in Vietnam.

2. Thesis purpose

The research purpose of the thesis is to develop current Mie theory to study the
plasmonic properties of nanostructures investigated in experiments and simulations.
Study of temperature variation of these plasmonic nanostructures under laser illu-
mination, to discover new properties and structures to optimize the efficiency, and
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to exploit how to use the photothermal effect of the system in various applications.

3. Research methods

The thesis uses semi-empirical modeling method to study the plasmonic prop-
erties of the nanostructures. Specifically, the Mie theory and its improvements are
used to determine optical spectra of core-shell nanosystems, especially for nanopar-
ticles and graphene-coated nanoparticles. For composite nanostructure composed of
a square lattice of graphene nanodisks on a diamond-like carbon thin film grown
on a silicon substrate, we apply quasistatic approximation combined with dipole
approximation to determine the polarizability of a single graphene resonator from
which the absorption and extinction cross sections can be calculated. Along with
that, complicated analytical calculations for photothermal effect have been given
that continuum mechanics theory and solving heat transfer and diffusion equations,
combining numerical methods, simulation methods and data analysis using Fortran
and Matlab software. Compare the results obtained with the experimental data and
research results of other authors.

4. Scientific significance of the thesis

The thesis proposes a semi-empirical approach to be able to combine with the
experimental groups in Vietnam to explain the results and together propose new
applications. Not only stopping at the calculation of Mie theory for core-shell systems
with perfectly round and smooth surface, our method allows to perform calculations
on core-shell nanostructures with rough surface such as nanoflowers and nanostars.
From there, a method to study general photothermal effect for different structures is
proposed. This method is quite simple, has been published in prestigious scientific
journals and can completely help experimental groups verify data and predict the
results of systems that have never been studied. The results obtained by the thesis are
scientific and practical significances, have contributed to the general understanding
of plasmonic properties and photothermal applications of nanostructures.

5. Structure of thesis

Excluding the introduction, the conclusion and the references, this thesis is di-
vided into 4 chapters:

Chapter 1 : Overview of basic theories related to research problems
Chapter 2 : Mie theory and photothermal model for core-shell nanostructures
Chapter 3 : Plasmonic properties of graphene-based nanostructures in terahertz

waves
Chapter 4 : Plasmonic photothermal heating of graphene-based nanostructures
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Chapter 1

Overview of basic theories

related to research problems

This chapter presents a system of the basic theories to construct research model
for the surface plasmon effect and the photothermal effect of plasmonic nanostruc-
tures. All calculations and developments throughout the thesis are based on the
foundational knowledge of this chapter. The important physical quantities and pa-
rameters that determine the properties and behaviors of surface plasmons will also
be discussed.

1.1 Theoretical model for dielectric function

The dielectric function is the basic physical quantity and characterizes the inter-
action between a material and the electromagnetic field. The general formula of the
dielectric function for all materials can be obtained based on the simple model of
classical mechanics that is the harmonic oscillator model as follows

ε(ω) = 1 +
∑
j

ω2
P

ω2
j − ω2 − iγjω

(1.1)

where ωP is plasma frequency. This model is also known as the Drude-Lorentz model
as a recognition for the contributions of famous scientists Drude and Lorentz to the
model of dielectric functions from the early 20th century.

1.2 Mie theory for optical properties of single-material

nanoparticles

Physicist Gustav Mie has come up with a analytical solution for the simplest case:
a single metallic spheroid. Mie’s theory was later developed by Gans to compute
non-spherical nanoparticles. These calculations are only accurate provided that the
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particle size is very small relative to the range of the incident wavelength. Not
only that, today Mie theory is also developed to calculate the optical spectrum for
multilayer systems. Recently, the comparison of the optical spectrum calculated by
Mie theory with the solar spectrum has been used to optimize the structure and find
new materials suitable for solar cell fabrication. In addition, the calculations based
on Mie theory allow quantitative prediction of the temperature increase in solutions
containing nanoparticles under laser illumination.

1.2.1 Mie theory for single-material spherical nanoparticles

The solution of Maxwells equations for spherical particles is named after the
physicist Gustav Mie. The Mie scattering theory allows describing the scattering of
a plane monochromatic wave by a homogeneous sphere surround by a homogeneous
medium for any particle radius and of any material. It deals with the problem of
the continuity of the tangent component of the total electromagnetic fields fulfilling
Maxwell’s equations outside and inside the sphere. The fields outside the sphere
include the incident field of the plane light wave arriving from a distinct source
not included in Maxwell equations. However, Mie scattering theory does not deal
with the problem of surface electron density oscillations (surface plasmons) coupled
to surface localized electromagnetic fields, although usually positions of successive
peaks appearing in light scattering spectra of conducting particles obtained with Mie
theory, are interpreted as directly related to positions of surface plasmon resonances.
Once the Mie coefficients are determined, we can calculate the extinction, absorption
and scattering cross sections or the electromagnetic fields inside and outside of the
spherical particle. Mie theory codes were used to simulate the optical properties of
spheres nanoparticles. When the dimensions of the particles are smaller than the
light wavelength it is possible to employ the so-called quasistatic approximation.

The analytical solution of Mie theory for absorption, scattering, and extinction
cross sections of the spherical nanoparticle in a continuous dielectric medium are

Qext =
2π

k2
m

∞∑
n=1

(2n+ 1)Re(an + bn),

Qscat =
2π

k2
m

∞∑
n=1

(2n+ 1)
(
|an|2 + |bn|2

)
,

Qabs = Qext −Qscat, (1.2)

where km = 2π
√
εm/λ, εm is the dielectric constant of mediun, and λ is the wavelength

of incident light, the Mie scattering coefficients

an =
ψn(x)ψ

′

n(mx)−mψn(mx)ψ
′

n(x)

ξn(x)ψ′
n(mx)−mψn(mx)ξ′

n(x)
,

bn =
mψn(x)ψ

′

n(mx)− ψn(mx)ψ
′

n(x)

mξn(x)ψ′
n(mx)− ψn(mx)ξ′

n(x)
(1.3)
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where ψn(x) = xjn(x) and ξn(x) = xh
(1)
n (x) are Riccati-Bessel and Riccati-Hankel

functions, respectively, x = kmR with R is the radius of spherical nanoparticle,
m =

√
ε(ω)/εm is the ratio of the refractive index of the nanoparticle to the medium

at the frequency ω.

1.2.2 Mie theory for single-material aspherical nanoparticles

The optical absorption cross section of a single-material aspherical nanoparticle
can be calculated by the extended Mie-Gans theory

Qabs =
2πε1/2

m

3λ
Im[αa + αb + αc] (1.4)

where αj is the polarizability of the ellipsoid along j direction, where j = a, b, c

refers to characteristic lengths of the ellipse, and a and c are the semi-major and
semiminor axis, respectively. The calculations have also been widely applied to
explain the absorption spectrum of nanorod as the spheroid is prolate. According to
the extended Mie theory, αj is expressed by

αj =
4πabc

3

ε(ω)− εm
εm + Lj[ε(ω)− εm]

(1.5)

where Lj is a factor responsible for the ellipsoid shape.

1.3 Basic theory for heating system by plasmon mech-

anism

1.3.1 Plasmonic heating of single nanoparticle under laser illumi-

nation

When metal nanoparticle irradated by laser light, the electrons on surface of
nanoparticle are collectively excited and the nanoparticle absorb optical energy and
dissipate to the heat. The temperature field in the vicinity of nanoparticle is qua-
sistatic. Therefore, we obtain

κ
1

r2

∂

∂r

(
r2∂T

∂r

)
+

3QabsI0

4πR3
= 0 at r < R, (1.6)

1

r2

∂

∂r

(
r2∂T

∂r

)
= 0 at r > R, (1.7)

where κ is the thermal conductivity of the medium. The surface temperature increase
of nanoparticle ∆T can be easily determined from energy equilibrium conditions,
namely, QabsI0 = −4πR2κ∂T/∂r at r = R, the results are obtained in the following
expression

∆T =
I0Qabs
4πRκ

(1.8)
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1.3.2 Photothermal heating of solutions due to plasmonic nanopar-

ticles under laser illumination

Laser light with a wavelength in the NIR region can penetrate water and bio-
logical tissue to excite the surface localized resonance of metal nanostructures. The
nanostructures absorb optical energy and dissipate to the heat. We assume that
the efficiency of the light-to-heat conversion is 100% and the particles are randomly
distributed in an effective spherical region of radius R. The radius R is estimated
by a radius of a sphere with a volume of measured suspensions. The temperature
rise in the experimental samples under the laser light illumination is described by
two distinct but strongly correlated processes: heat dissipation from particles and
the convective heat transfer in medium. The time-dependent temperature increase
of experimental samples ∆T (r, t) induced by the photothermal effect is theoretically
described by the Pennes bioheat transfer equation in spherical coordinates

1

κ

∂∆T

∂t
=

1

r2

∂

∂r

(
r2∂∆T

∂r

)
− ∆T

κτ
+
A

k
, (1.9)

where k and κ = k/(ρc) are the thermal conductivity and thermal diffusivity of
the medium, respectively, ρ is the mass density, c is the specific heat, and τ is the
perfusion time constant, A = NQabsI0 is the heat source density due to absorbed
energy on metal nanoparticles, N is the number of particles per unit volume in the
samples, and I0 is an irradiation intensity. The temperature variation and its spatial
derivatives have to be continuous at r = R. The temperature at the center of the
localized spherical domain of nanoparticles is assumed to be measured using thermal
probes. The temperature at r = 0 is

∆T (r = 0, t) =
A

k
[−κ

∫ t

0

e−t
′
/τerfc

(
R

2
√
κt

′

)
dt

′

− R

∫ t

0

e−t
′
/τ

√
κ

πt
′ exp

(
−R2

4κt′

)
dt

′

+ κτ(1− e−t/τ )]. (1.10)

1.4 Conclusion

In this chapter, we have presented an overview of the dielectric function theory,
the plasmonic properties of materials under electromagnetic field irradiated. Then we
presented the general Mie theory to calculate the optical spectra for single-material
spherical nanoparticles, for aspherical materials such as nanodisk and nanorod. From
here, establish a theoretical calculation method for the temperature increase of the
and of the biological solution or tissue containing a set of nanoparticles that are
uniformly distributed throughout the system under laser illumination.
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Chapter 2

Mie theory and photothermal

model for core-shell

nanostructures

This chapter presents Mie theory and photothermal model in core-shell nanosys-
tems and its limitations when compared with experiments. In section 2.1, we
will present the total Mie theory for core-shell nanosystems with perfectly round
and smooth surface and its photothermal effect. The section 2.2 presents optical
properties and the thermal-induced stress in the surroundings of heated Ag@Fe3O4

nanoflowers in different media using the Mie theory and continuum mechanics the-
ory. The content of this section is in the first paper in the thesis-related publications,
which was published in Journal of the Physical Society of Japan.

2.1 Spherical core-shell nanoparticles

2.1.1 Mie theory for optical spectra

Exact expressions of the Mie scattering theory calculating the extinction, scat-
tering, and absorption cross sections of isotropically coated spherical nanoparticles
are given by

Qext =
2π

k2
m

∞∑
n=1

(2n+ 1)Re (an + bn) ,

Qscat =
2π

k2
m

∞∑
n=1

(2n+ 1)
(
|an|2 + |bn|2

)
,

Qabs = Qext −Qscat, (2.1)
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where

an = − UTMn
UTMn + iV TM

n

, bn = − UTEn
UTEn + iV TE

n

,

UTMn =

∣∣∣∣∣∣∣∣∣∣∣∣

jn(kcRc) jn(ksRc) yn(ksRc) 0
Ψ

′

n(kcRc)

εc

Ψ
′

n(ksRc)

εs

Φ
′

n(ksRc)

εs
0

0 jn(ksRs) yn(ksRs) jn(kmRs)

0
Ψ

′

n(ksRs)

εc

Φ
′

n(ksRs)

εs

Ψ
′

n(kmRs)

εm

∣∣∣∣∣∣∣∣∣∣∣∣
,

V TM
n =

∣∣∣∣∣∣∣∣∣∣∣∣

jn(kcRc) jn(ksRc) yn(ksRc) 0
Ψ

′

n(kcRc)

εc

Ψ
′

n(ksRc)

εs

Φ
′

n(ksRc)

εs
0

0 jn(ksRs) yn(ksRs) yn(kmRs)

0
Ψ

′

n(ksRs)

εc

Φ
′

n(ksRs)

εs

Φ
′

n(kmRs)

εm

∣∣∣∣∣∣∣∣∣∣∣∣
, (2.2)

where Rc and Rs are the inner and outer radius of the core-shell nanostructure,
respectively, Vn and Un are determinants, jn(x) is the spherical Bessel function of
the first kind, yn(x) is the spherical Neumann function, and Ψ(x) = xjn(x) and
ξn(x) = xyn(x) are the Riccati-Bessel functions. UTEn and V TE

n are obtained by
replacing the dielectric function in Eq.(2.2) with the permeability. The dielectric
functions of core, shell, and surrounding medium of the core-shell nanoparticles are
εc, εs and εm, respectively.

2.1.2 Photothermal effect in the core-shell nanosystems under

near-infrared laser irradiation

Temperature variation of experimental samples ∆T (r, t) induced by the pho-
tothermal effect of gold materials is theoretically described by the Pennes bioheat
transfer equation in spherical coordinates Eq.(1.9). The steady-state temperature
increase can be estimated using

∆T = 2∆TmaxRsNAbeamln

[
lopt
Rbeam

]
,

∆Tmax =
QabsI0

4πkRs
, (2.3)

where ∆Tmax is the maximum temperature at the nanoparticle surface, loptt is the
optical path length.
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2.2 Plasmonic properties and thermal-induced stress

of nanoflowers

In recent years, peculiar properties of composite nanostructures have become of
great interest because they have various technological and biomedical applications.
The development of nanoscience allows the synthesis of a variety of hybrid systems
with desired sizes and structures enabling the designing and creation of multifunc-
tional and complex systems. Magnetite nanoparticles possess novel characteristics
such as strong sensitivity to magnetic fields, high biocompatibility and relatively low
toxicity in human body, along with capability of removing heavy metal ions. While
the localized surface plasmon resonances of silver nanoparticles greatly enhance elec-
tric field around the nanostructures and induce other fascinating features in visible
range. Silver nanoparticles are also known as effectively antibacterial agents but
toxic metal. Local heating of Ag@Fe3O4 nanocomposites using both photothermal
and magnetic hyperthermia effects have been demonstrated to remarkably increase
a rapid temperature rise compared to the single method, and can be used for cancer
treatment. Moreover, the localized heat generates spatiotemporally heterogeneous
temperature distribution and can improve ultrasonic imaging. Consequently, com-
bining Ag and Fe3O4 has considerably enlarged desirable synergistic and comple-
mentary effects. In this section, we theoretically investigate optical properties and
thermal-induced stress of Ag@Fe3O4 core-shell nanoflowers (Fig.2.1), which has been
experimentally synthesized in visible range.

m
ag

ne
tit

e

Rc

Rs

εc

εs

εm

Silver nanoparticle

Figure 2.1: Schematic illustration of Ag@Fe3O4 nanoflowers.

2.2.1 Mie theory for optical spectra of Ag@Fe3O4 nanoflowers

The expressions of the Mie scattering theory calculating the extinction, scatter-
ing, and absorption cross section of core-shell nanoflowers are determined by Eqs.
(2.1) and (2.2). In the nanoflowers synthesized as shown in Fig.2.1, the iron oxide
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petals are grown on silver surface, thus the shell includes Fe3O4 and medium. In or-
der to simplify calculations, we use the effective-medium approximation for the shell
layer. The effective dielectric function can be modeled by the Lichtenecker model
εs(ω) = fεFe3O4 +(1−f)εm, where f is the fraction of magnetite comprising the shell.
While εc(ω) = εAg(ω). Rc = 24 nm is a radius of the silver core and Rs = 60 nm is
an outer radius of the nanoflower.

 A g  n a n o p a r t i c l e
 F e 3 O 4  n a n o p a r t i c l e
 A g @ F e 3 O 4  n a n o f l o w e r

3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 00

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0
Ab

so
rpt

ion
 (n

m2 )

w a v e l e n g t h  ( n m )

Figure 2.2: Absorption cross sections of Ag, Fe3O4, and Ag@Fe3O4 nanoparticles in
water (εm = 1.77) calculated by general Mie theory.

Figure 2.2 shows theoretical calculations using the Mie theory for the absorp-
tion spectrum of Ag@Fe3O4 nanoflowers, pure spherical Ag and Fe3O4 nanoparticles
dispersed in water. The resonance peak wavelength of silver nanoparticles with a
radius of 24 nm is around 415 nm. The surface plasmon resonance of silver and
the electronic transition of magnetite at 400 nm are mainly responsible for the first
band of Ag@Fe3O4 nanoflowers. While the 2.2 eV (∼565 nm) band gap of mag-
netite nanostructure significantly reduces the effects of lower energy excitations on
the absorption spectrum, it results in an absence of an optical maximum of Fe3O4

nanoparticles experimentally observed and theoretically calculated in visible range.
When magnetite is coated on the surface of silver nanoparticles, the surface defects
can narrow the band gap of magnetite petal and lead to the occurence of the second
peak in the absorption spectrum of Ag@Fe3O4 nanocomposites. Within the frame-
work of the Mie theory, the dielectric function of Fe3O4 is integrated in Qabs via
spatial averaging. Consequently, the second band can be interpreted as geometric
effects and the interfacial interaction plays minor role in the absorption spectrum.
To have the best agreement between our theoretical calculations and previous exper-
iment, an adjustable parameter f is altered to achieve the second peak at 620 nm
(close to 615 nm in experiment) and the 620 nm absorbance higher than the 400 nm
resonance by a factor of 1.5. Based on these criteria, magnetite is found to cover
40% volume of the shell (f ≈ 0.4).

Figure 2.3 presents how the absorption spectra of nanoflowers in silica are altered
when the magnetite size varies (Rc = 24 nm). When replacing water medium with
silica, the small dielectric constant difference leads to a red-shift in the second plas-
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Figure 2.3: Absorption cross sections of Ag@Fe3O4 nanoflowers calculated by general
Mie theory in SiO2 (εm = 2.25) with different shell sizes.

monic resonance toward the near-infrared region and a relatively small blue-shift in
the first absorption peak. An increase in the thickness of the Fe3O4 layer remarkably
increases the absorption intensity near 400 nm wavelength due to coupling between
the electronic transitions of magnetite and the plasmon band of silver.

2.2.2 Thermal Strain of Ag@Fe3O4 nanoflowers

As the Ag@Fe3O4 suspension is exposed to 400-nm laser light, nanoflowers absorb
optical energy at the plasmonic resonant wavelength and effectively generate heat.
For the steady state, the distribution of the radially symmetric temperature rise
outside a nanoflower (r ≥ Rs) is given

T (r) =
QabsI0

4πκm

1

r
= Ts

Rs
r
, (2.4)

where κm = 0.6 Wm−1K−1 is the thermal conductivity of water, Ts is the temperature
rise on the surface of the nanoflower, and I0 is the intensity of the exposing laser
light. The temperature profile inside nanoflowers can be obtained using the heat
diffusion conditions at interfaces

T (r) =


−Ts

[
κmr

2

2κcR2
s
−

2κs + κm

2κs
+
R2
cκm(κc − κs)

2R2
sκsκc

]
in core

Ts

[
−
κmr

2

2κsR2
s

+
2κs + κm

2κs

]
in shell

(2.5)

Since nanoflowers are modeled to be a roughly spherical shape and are subject to
thermal gradients, we assume the deformation induced by thermoelastic effects is
spherically symmetric and purely radial. Another assumption is that the coreshell
structures can be considered as a homogeneous nanosphere with the radius Rs. The
equilibrium equation for isotropic and homogeneous materials in absence of body
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forces provides

Gj 52 uj +

(
Kj +

Gj
3

)
5 (5uj)− αjKj 5 T = 0, (2.6)

where α is the coefficient of thermal expansion, u ≡ u(r) is the strain field, Kj =
Ej/3(1 − 2νj) and Gj = Ej/2(1 + νj) are the bulk and shear modulus of medium j

(j = c, s,m), respectively, νj = (3Kj − 2Gj)/2(3Kj + Gj) is the Poisson’s ratio, and
Ej is the Young’s modulus. The equilibrium equation associated with 5 × uj = 0
(no rotation) can reduce to be

52uj = αj
1 + νj

3(1− νj)
5 T (r). (2.7)

The deformation field within core uc(r) and shell us(r), and outside [um(r)] nanoflow-
ers can be obtained by solving Eq.(2.7), using the finiteness of strain field fields at
r = 0 and r =∞

uc(r) = Acr,

us(r) = −αs
1 + νs

3(1− νs)
κmTs
2κsR2

s

r3

5
+ Asr +

Bs
r2
,

um(r) =
TsRs

2

αm(1 + νm)

3(1− νm)
+
Bm
r2

, (2.8)

where coefficients Ac, As, Bs and Bm can found by applying continuity of traction
and fields across interfaces.

Substituting the strain displacements into the stressstrain relations gives the
radial stresses in regions

σc,rr(r) = 3KcAc,

σs,rr(r) = −Ksαs
3− νs
1− νs

κmTs
2κsR2

s

r2

5
+ 3KsAs −

4GsBs
r3

,

σm,rr(r) = αm
νmKm

1− νm
TsRs
r
− 4GmBm

r3
. (2.9)

Equation (2.9) presents the spatial distribution and strong size dependence of the
stress strains. While the radial pressure inside the core remain unchanged, the
stresses within the nanoflower shell and in medium are strongly dependent on r.

For water medium, Young’s modulus Em is supposed to be zero, we enable to
measure the spatial displacement both stress strains outside nanoflowers. Because
Gm = 0, νm = 1/2, and Ts varies less than 100 oC, σm,rr(r) = αmKmTsRs/r is
relatively small in comparison with Km. The radial stress is long-ranged and simply
inversely proportional to the distance r.

When the surrounding medium is silica glass, we can determine the stress in silica
using 400 nm laser irradiation at a power density of 104 W/cm2 for different sizes
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Figure 2.4: The radial stress outside versus distance from center of Ag@Fe3O4

nanoflowers with various diameters.

of the nanocomposites in Fig.2.4. The stress components in silica decay almost as
the inverse cube of the distance near the outer surface but it is proportional to 1/r
in long-range distances. The variation is identical to the previous finding. If the
stress does not obey an inverse cube law, the system may have impurity, obstacles
or asymmetrical interrupting factors. As a result, laser-induced thermoelastic effects
can be exploited to detect defects in substances and devices.

2.3 Conclusion

We have explored optical properties and the thermal-induced stress in the sur-
roundings of heated Ag@Fe3O4 nanoflowers in different media using the Mie theory
and continuum mechanics theory. Our calculations show that the resonance wave-
length of around 400 nm in the absorption is attributed to the surface plasmon
resonance of silver and the electronic transition of iron oxide. The second optical
band at 620 nm is due to geometrical effects. A subtle interplay between core and
shell is supposed to have an inconsiderable effect on the absorption spectrum. The
optical peak shift is strongly dependent on the finite size of the nanocomposite and
how magnetite is grown on the silver surface. Using laser irradiation or AC magnetic
fields leads to temperature rise that generates the strain field inside nanoflowers and
their ambient surrounding environment. The thermal stress variation has been ana-
lytically found. The long-range stress decays as the inverse of the distance and this
finding is in a good agreement with previous study.
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Chapter 3

Plasmonic properties of

graphene-based nanostructures

in terahertz waves

In this chapter, we present the theoretical studies on the plasmonic properties
of graphene on bulk substrates and graphene-coated nanoparticles. The surface
plasmons of such systems are strongly dependent on bandgap and Fermi level of
graphene that can be tunable by applying external fields or doping. An increase
of bandgap prohibits the surface plasmon resonance for GHz and THz frequency
regime. While increasing the Fermi level enhances the absorption of the graphene-
based nanostructures in these regions of wifi-waves. Some mechanisms for electric-
wifi-signal energy conversion devices are proposed. The contents of this chapter are
in the second paper in the thesis-related publications.

3.1 Theoretical background

3.1.1 Tight binding approach for graphene

Graphene is a two-dimensional material that has carbon atoms arranged in a hon-
eycomb lattice. Let a = 0.142 nm be the length of the nearest-neighbor bonds. The
two lattice vectors can be expressed by a1 = a(3/2,

√
3/2) and a2 = a(3/2,−

√
3/2).

The Hamiltonian gives the graphene energy band

E±(k) = ±t
√

3 + f(k), (3.1)

where,

f(k) = 2 cos
√

3kya+ 4 cos

(√
3

2
kya

)
cos

(
3kxa

2

)
. (3.2)
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At K = (2π
√

3, 2π)/3
√

3a and K′ = (2π
√

3,−2π)/3
√

3a, E± = 0. Near K point,
k = K + q with q relatively small, the electron energy can be calculated by

E± = ±3t

2
qa. (3.3)

3.1.2 Optical graphene conductivity

The inter- and intra-band conductivity of gapped graphene can be determined
by

σintra =
ie2/π~2

ω + iτ−1

∫ ∞
∆

dE

(
1 +

∆2

E2

)
[f(E) + 1− f(−E)]

σinter =
ie2ω

π

∫ ∞
∆

dE

(
1 +

∆2

E2

)
f(E)− f(−E)

4E2 − ~2(ω + iΓ)2
. (3.4)

The graphene chemical potential can be controlled by an applied electric field Ed

πε0~2v2
F

e
Ed =

∫ ∞
0

E[f(E)− f(E + 2Ec)]dE, (3.5)

where ε0 is the vacuum permittivity.

3.2 Absorption of graphene

In order to estimate the absorption of graphene, the reflection and transmission
coefficient of graphene on top of semi-infinite substrate must be known. These are

rTE =
k1 − k2 − µ0σ(ω)ω

k1 + k2 + µ0σ(ω)ω
,

tTE =
2k1

k1 + k2 + µ0σ(ω)ω
,

rTM =
ε2k1 − ε1k2 + σ(ω)k1k2/ε0ω

ε2k1 + ε1k2 + σ(ω)k1k2/ε0ω
,

tTM =
2ε1k2

ε2k1 + ε1k2 + σ(ω)k1k2/ε0ω
, (3.6)

where TM and TE denote for the transverse magnetic and electric mode, respec-

tively, µ0 is the vacuum permeability. km =
√
εmω2/c2 − k2

‖, k‖ is the component of

wavevector parallel to the surface, εm is the dielectric function of medium m. The
light comes from medium 1, partly transmits to medium 2 and reflects back into
medium 1.

The incident and transmitted light have the intensity I0 = 1
2

√
ε0
µ0
|E0|2Re(ε1) and

It = 1
2

√
ε0
µ0
|Et|2Re(ε2). E0 and Et are the amplitude of incident and transmitted
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electric fields. Thus, the absorbance of graphene can be calculated by

A = 1− |r|2 −Re

(√
ε2√
ε1

)
|t|2. (3.7)

3.3 Numerical results and discussions

3.3.1 Absorption spectra of freely-suspended graphene
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Figure 3.1: Normal-incidence absorption spectra of free-standing graphene with (a)
different Fermi energies when ∆ = 0, and (b) different values of band gap at EF = 0.

Figure 3.1 presents the absorption spectra of freely-suspended graphene with a
variety of chemical potentials and band gaps. In visible light regions, our results
are in good agreement with previous results with σ(ω) = σ0, A ≈ πα ≈ 2.3 % and
T ≈ 97.7%. Graphene is extremely transparent in air. This finding suggests that σ(ω)
and the absorption remain constant and can be significantly enhanced by increasing
EF . Interestingly, approximately 50% of the optical energy of the incidence light can
be absorbed by graphene when EF = 1 eV.

3.3.2 Absorption spectra of a monolayered graphene on bulk sub-

strates

As can be seen in 3.2, the absorption of graphene on gold semi-infinite substrate in
air, free electrons on the gold surface absorb and re-emit the most incident photons.
This result suggests that pure graphene has a higher absorption than graphene on
gold substrates. |r| ≈ 1 at low frequencies since ε2(ω)→∞, while ε1(ω) = 1 and g(ω)
are finite values.

Figure 3.3 presents the absorption cross section of a graphene sheet on silica
substrate. Silica substrates have been broadly used to support graphene sheets in
many experiments and devices. Graphene on SiO2 also absorbs less electromagnetic
energy but the absorbance ranges from 15% to 37% as EF and ∆ approach 0. Note
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Figure 3.2: Normal-incidence absorption spectra of a monolayer graphene on gold
substrate with (a) different Fermi energies when ∆ = 0, and (b) different values of
band gap at EF = 0.

that the nonzero bandgap induces a significant reduction of absorption at low en-
ergy. Reducing ∆ as much as possible maximizes the performance of the plasmon in
graphene.
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Figure 3.3: Normal-incidence absorption spectra of a monolayered graphene on silica
substrate with (a) different Fermi energies when ∆ = 0, and (b) different values of
band gap at EF = 0.
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3.3.3 Absorption spectrum of graphene-coated SiO2 nanoparti-

cles

The absorption cross section Aabs of graphene-conjugated silica nanoparticle with
a radius R is given using the Mie theory

al =
Ψl(

2πnmR
λ )Ψ

′

l(
2πnpR
λ )− np

nm
Ψ

′

l(
2πnmR

λ )Ψl(
2πnpR
λ )− iσ

√
µ0

ε0εm
Ψ

′

l(
2πnmR

λ )Ψ
′

l(
2πnpR
λ )

ξl(
2πnmR

λ )Ψ
′

l(
2πnpR
λ )− np

nm
ξ
′

l(
2πnmR

λ )Ψl(
2πnpR
λ )− iσ

√
µ0

ε0εm
ξl(

2πnmR
λ )Ψl(

2πnpR
λ )

,

bl =
np
nm

Ψl(
2πnmR

λ )Ψ
′

l(
2πnpR
λ )−Ψ

′

l(
2πnmR

λ )Ψl(
2πnpR
λ )− iσ

√
µ0

ε0εm
Ψ

′

l(
2πnmR

λ )Ψ
′

l(
2πnpR
λ )

np
nm
ξl(

2πnmR
λ )Ψ

′

l(
2πnpR
λ )− ξ′

l(
2πnmR

λ )Ψl(
2πnpR
λ )− iσ

√
µ0

ε0εm
ξl(

2πnmR
λ )Ψl(

2πnpR
λ )

,

Aabs =
λ2

2πεm

∞∑
l=1

(2l + 1)
(
Re(al + bl)− |al|2 − |bl|2

)
, (3.8)

where np =
√
εSiO2 is the complex refractive index of the nanoparticle, nm =

√
εm = 1

is the refractive index of vacuum, Ψl(x) = xjl(x) and ξl(x) = xh
(1)
l (x) are Riccatie-

Bessel and Riccatie-Hankel functions, respectively, jl(x) is the spherical Bessel func-

tion of the first kind, and h
(1)
l (x) is the spherical Hankel function of the first kind.

Figure 3.4 shows the absorption cross section of a graphene-coated 50-nm-radius
SiO2 nanoparticle. It is easy to see that two plasmonic resonances of graphene/SiO2

nanoparticle are in the reliable range of the quasi-static approximation but non-
zero optical conductivity of graphene layer on nanoparticle’s surface leads to the
failure of the approximation. Two peaks in the spectrum are attributed to the
transitions of the electrons in graphene and frequencies of longitudinal and transverse
optical phonons of SiO2. The position of the first resonance is strongly sensitive to
EF and the size of nanoparticle. The chemical potential enhancement weakens the
contribution of graphene on the absorption spectrum. Technological advances have
allowed the precise measuring of the particle’s size. Interestingly, the absorption
difference between the two optical peaks is about 1-2 orders of magnitude. This
phenomenon is reversed in the bulk system.
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Figure 3.4: Absorption spectrum of graphene-coated SiO2 nanoparticle with R = 50
nm and various Fermi levels.

Figure 3.5: Absorption spectrum of graphene-coated SiO2 nanoparticle with R = 30
(red), 50 (orange) and 80 nm (green) at different chemical potentials. The solid and
dashed-dotted lines correspond to EF = 0 and 0.5 eV, respectively.

The strong dependence of the particle size on the optical spectrum is shown in
Fig. 3.5. The first peak resonant position is blueshifted with increasing particle size.
The magnitude of the plasmonic resonant peaks decays remarkably when the radius
is reduced. The second band’s position remains unchanged as varying sizes and EF
of graphene since it is just dependent on phonon properties of silica.

3.4 Conclusion

In this chapter, we have studied the absorption spectrum of graphene-based sys-
tems. Graphene is quite transparent when it is put on gold substrates because
the metallic substrate reflects most of the electromagnetic wave energy. The sil-
ica substrate allows approximately 15-37% incident wave energy to be absorbed on
graphene. A variation of the absorbed energy depends on the Fermi energy and
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bandgap of graphene. The strong absorbance of graphene in the GHz-THz regime
can be exterminated by increasing the bandgap. The plasmonic properties of the
nanostructures are demonstrated to be much larger than that in their bulk counter-
parts. Two peaks in the absorption spectrum of graphene-coated silica nanoparticle
can be used to produce energy converters using the plasmo-electric effect.
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Chapter 4

Plasmonic photothermal

heating of graphene-based

nanostructures

In this chapter, we present a theoretical model to calculate plasmonic properties
of graphene-based nanostructures and temperature distribution in the systems when
irradiated by a mid-infrared laser light. Our graphene-based systems are composed
of a square lattice of graphene nanodisks on a diamond-like carbon thin film grown
on a silicon substrate. Optical resonances are sensitive to structural parameters and
the number of graphene layers. Under mid-infrared laser irradiation, the steady-state
temperature gradients are calculated. Furthermore, the analytical formulas that we
give show a close correlations between temperature change and the optical power,
laser spot, and thermal conductivity of dielectric layer. The content of this chapter is
in the third paper in the thesis-related publications, which was published in Physica

Status Solidi-Rapid Research Letters.

4.1 Motivation

Graphene has been recently considered as a novel plasmonic material, which
strongly confines electromagnetic fields but provides relatively low loss. Conse-
quently, graphene-based metamaterials are of interest and potentially display various
intriguing behaviors.

4.2 Plasmonic properties and temperature distribu-

tion of graphene-based nanostructures

Our graphene-based systems are investigated as shown in figure 4.1.
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Figure 4.1: (a) The top-down view and b) the side view of graphene-based system
including structural parameters.

The reflection and transmission coefficient of the graphene-based nanostructure
are

t13 =
t12t23e

i(ωc
√
ε2h)

1 + r12r23e
2i(ωc

√
ε2h)

,

r13 =
r12 + r23e

2i(ωc
√
ε2h)

1 + r12r23e
2i(ωc

√
ε2h)

(4.1)

where c is the speed of light, g ≈ 4.52 is the net dipolar interaction over the whole
square lattice, rpq and tpq are the bulk reflection and transmission coefficients, re-
spectively, when electromagnetic fields strike from medium p to q. From these, we
compute the transmission |t13|2 ≡ |t13(N)|2 for N > 0 and N = 0 corresponding
to systems with and without graphene plasmonic resonators. The extinction spec-
tra measured in the experiments is the relative difference in these transmissions
1-|t13(N)|2/t13(N = 0)|2. The calculations clearly determine confinement effects of
electromagnetic fields due to graphene plasmons. Figure 4.2 shows theoretical in-

Figure 4.2: Theoretical extinction spectra for systems having a graphenedisk array
with EF = 0.45 eV and ~τ−1 = 0.03 eV at several numbers of graphene layers.

frared extinction spectra of graphene-based systems with several values of graphene
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plasmon layers. The numerical results indicate the plasmonic peak for a square lat-
tice of three-layer-graphene disks is roughly located at 0.1 eV, which quantitatively
agrees with experiment. The presence of graphene plasmons reduces the transmis-
sion of electromagnetic fields through these systems. An inrease in N blue-shifts
the plasmonic resonance and enhances the amplitude signal in the optical spectra.
More mid-infrared optical energy is confined in the system as increasing the layer
number of graphene plasmons. The amount of the trapped energy can be indirectly
measured via temperature caused by the light-to-heat conversion process.

Under infrared laser irradiation, the diamon-like carbon layers and graphene-
disk resonators absorb electromagnetic energy and are heated up. The temperature
increase in cylinderical coordinate, ∆T ≡ ∆T (ρ, z), obeys the heat diffusion equa-
tion. Because the graphene resonator is a 2D material, the thermal conductivity
is anisotropic. This diffusion equation in the layer including all stacked plasmonic
disks is

κ1‖
1

ρ

d

dρ

(
ρ
d∆T

dρ

)
+ κ1⊥

d2∆T

dz2
= p0e

− 2ρ2

w2 e−ν1z, (4.2)

where p0 is the laser power per unit volume, w is the laser spot, ν1 is the absorption
coefficient, κ1‖ and κ1⊥ are the effective in-plane and out-of-plane thermal conduc-
tivity, respectively. In the diamond-like layer, the diffusion equation is

κ2

[
1

ρ

d

dρ

(
ρ
d∆T

dρ

)
+
d2∆T

dz2

]
= p0e

− 2ρ2

w2 e−ν1L−ν2(z−L), (4.3)

where κ2 ≈ 0.6 W/K/m is the thermal conductivity of the diamond-like layer and ν2 ≈
1.5 µm−1 is the absorption coefficient. For simplification purpose, we assume that
the silicon substrate is kept at ambient temperature by contacting with a thermostat.
This boundary condition was used to successfully analyze experiments.

To solve these differential equations, we take the Hankel transform of the afore-
mentioned equations in ρ and it gives

Θ(u, z) = A1(u)e
−
√

κ1‖
κ1⊥

uz
+B1(u)e

√
κ1‖
κ1⊥

uz

+
ν1P0(1−R)

2π(k1‖u2 − κ1⊥ν
2
1)
e−

u2w2

8 e−ν1z, 0 ≤ z ≤ L (4.4)

Θ(u, z) = A2(u)e−uz +B2(u)euz

+
ν2P0(1−R)

2πκ2(u2 − ν2
2)
e−

u2w2

8 e−ν1Le−ν2(z−L), L ≤ z ≤ L+ h (4.5)

where ∆T (ρ, z) =
∫∞

0
Θ(u, z)J0(ρu)udu with J0 being the Bessel function of the first

kind. P0 is the power of the incident flux. A correction factor (1 − R) implies that
only the absorption and transmission component of light play a role in the heating
process. The reflection is calculated by R = |r13|2. A1(u), B1(u), A2(u), and B2(u)
are parameters determined by boundary condition.
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4.3 Numerical results for the spatial distributions of

steady-state temperature increase in graphene-based

systems

Numerical results are shown in Figure 4.3 for different N . The incident photons
are highly localized at the surface and spatially decay toward the bottom of the
diamond-like carbon layer. The temperature increase at the hottest spot area (z = 0
and ρ = 0) in the case of N = 10 is 45 K, whereas that of systems having N = 3 and
N = 1 are approximately 33 K and 34.5 K, respectively. These temperature increases
are much higher than ∆T (ρ = 0, z = 0) ≈ 1.67 K for the system without graphene
plasmons. This result clearly indicates that the dielectric loss is dominated by the
ohmic loss (Joule heating) on graphene resonators under the mid-infrared irradiation.

Figure 4.3: Spatial contour plots of the steady-state temperature increase in Kelvin
units in graphene-based systems having (a) N = 1, (b) N = 3, and (c) N = 10 under
illumination of a quantum cascade laser light.

Figure 4.4: Spatial contour plots of the steady-state temperature increase in Kelvin
units in graphene-based systems having N = 3 and (a) κ2 = 0.6 W/m/K, (b) κ2 = 1.2
W/m/K, and (c) κ2 = 2.0 W/m/K under illumination of a quantum cascade laser
light.

24



The thermal conductivity of the thin film (κ2) below graphene plasmons has a
significant influence on the temperature increase in graphene-based systems. Figure
4.4 shows that the steady temperature profile of the system for different values of κ2

illuminated by the mid-infrared laser light. We use the same laser as the calculations
in Figure 4.3. The object having a larger κ2 requires more thermal energy to be
heated. Thus, the temperature increase is depressed.

4.4 Conclusion

While illuminating the systems by the mid-infrared laser light, plasmonic nan-
odisks absorb more optical energy than the counterparts without graphene and con-
vert to thermal dissipation. This finding indicates that the ohmic loss is much larger
than the dielectric loss in the mid-infrared regime. An increase in graphene plas-
monic layers enhances the thermal gradients. At fixed number of graphene layers,
the temperature increase is linearly proportional to the optical power and decays as
the inverse square of the laser spot. Furthermore, a decrease in the heated tempera-
ture, as increasing the thermal conductivity of the thin film layer, is also calcualted
and discussed.
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Conclusion

The thesis studies plasmonic properties and photothermal effects of core-shell
nanostructures of different shapes and composite nanostructures based on graphene.
From the absorption spectra obtained by the Mie theory, we have developed methods
for calculating the temperature rise of nanostructures under laser illumination. New
academical contributions of the thesis can be summarized as follows:

• Developing the Mie theory studying plasmonic properties (absorption, scat-
tering and extinction spectra) for core-shell nanoparticles. This complete Mie
theory can be accurately calculated to a system of 160 nm when it is compared
to experimental data.

• Exploring the optical properties and the thermal-induced stress in the sur-
roundings of heated Ag@Fe3O4 nanoflowers in different media using the Mie
theory and continuum mechanics theory. Using laser irradiation leads to tem-
perature rise that generates the strain field inside nanoflowers and their ambient
surrounding environment. The thermal stress variation has been analytically
found. The long-range stress decays as the inverse of the distance and this
finding is in a good agreement with previous study. The stress components
in silica decay almost as the inverse cube of the distance near the outer sur-
face. As a result, laser-induced thermoelastic effects can be exploited to detect
defects in substances and devices.

• Theoretically study the plasmonic properties of graphene on bulk substrates
and graphene-coated nanoparticles. The surface plasmons of such systems are
strongly dependent on bandgap and Fermi level of graphene that can be tunable
by applying external fields or doping. An increase of bandgap prohibits the sur-
face plasmon resonance for GHz and THz frequency regime. While increasing
the Fermi level enhances the absorption of the graphene-based nanostructures
in these regions of wifi-waves. Some mechanisms for electric-wifi-signal energy
conversion devices are proposed. Our results have a good agreement with ex-
perimental studies and can pave the way for designing state-of-the-art electric
graphene-integrated nanodevices that operate in GHz-THz radiation.

• Investigating the plasmonic heating of graphene-based systems under irradi-
ation of a mid-infrared laser. The nanostructures comprise a square array of
multilayer graphene nanodisks deposited on the diamond-like carbon thin film,
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which is supported by a silicon substrate. Our numerical results are in ac-
cordance with experiments. While illuminating the systems by the laser light,
plasmonic nanodisks absorb more optical energy than the counterparts without
graphene and convert to thermal dissipation. This finding indicates that the
ohmic loss is much larger than the dielectric loss in the mid-infrared regime.
An increase in graphene plasmonic layers enhances the thermal gradients. At
fixed number of graphene layers, the temperature increase is linearly propor-
tional to the optical power and decays as the inverse square of the laser spot.
Furthermore, a decrease in the heated temperature, as increasing the thermal
conductivity of the thin film layer, is also calculated and discussed.
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