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Introduction

1. Overview of research situation

In 1966, while studying boundary problems for a class of partial differ-

ential equations, Hartman, Ph. and Stampacchia, G. first mentioned the

variational inequality model. Then, this problem became known for its

interesting applications such as Nash economic equilibrium model, traf-

fic network equilibrium model, optimal routing model of communication

network, non-cooperative game theory, image processing model and many

other applications described by Kinderlehrer, D. and Stampacchia, G. in

the popular book ”An Introduction to Variational Inequalities and Their

Application” and in some other documents.Variational inequality prob-

lems contain many familiar classes of problems, such as subdifferential

convex optimization problems, Kakutani fixed point problems, nonlinear

compensation problems, and several other models.

Let C be a nonempty closed convex subset of a real Hilbert space H
and a map F : H → H (often called the cost mapping), the variational

inequality problem with the cost mapping F and the constraint domain

C, denoted V I(C,F ), is stated as:

Find x∗ ∈ C such that ⟨F (x∗), x− x∗⟩ ≥ 0, ∀x ∈ C.

The variational inequality problem V I(C,F ) is a popular research subject

in the fields of Analysis and Optimization Theory. Currently, there are two

main research directions on this problem. First is, qualitative research on

the existence of solutions and properties of the solution set of the prob-

lem. Outstanding results of this research direction must be mentioned



2

with domestic and foreign research groups of Professor Yen, N.D. et.al,

Professor Khanh, P.Q. et.al, Professor Mordukhovich, B.S. et.al and many

other authors. Second is, research proposes solving algorithms and direct

applications to specific models. One of the popular methods to solve this

problem is the one-projection method, with an iteration diagram of the

form: x0 ∈ C,

xk+1 = ΠC [x
k − λF (xk)], ∀k ≥ 0.

Under the assumption that the cost mapping F is β−strongly monotone

and L−Lipschitz-continuous, λ ∈ (0, 2βL2 ), the sequence {xk} strongly con-

verges to a unique solution x∗ of problem V I(C,F ).

Let C be a convex, closed, and nonempty subset of a real Hilbert space

H, I = {1, 2, · · · }, the maps Si : H → H, (i ∈ I). In this thesis, we study

and propose new algorithms to solve the variational inequality problem

over fixed points set, denoted as V IF (Ω, F ), which is stated as follows:

Find x∗ ∈ Ω such that ⟨F (x∗), x− x∗⟩ ≥ 0, ∀x ∈ Ω, (1)

where Fix(Si) := {x ∈ H : x = Si(x)} and Ω = ∩i∈IFix(Si). Clearly,

when Si is an identity map, the problem V IF (Ω, F ) is written as the

usual variational inequality problem V I(C,F ).

When Ω is the fixed point set of a non-expansive map S : H → H,

Yamada, I. proposed the following quite simple gradient descent algorithm

with the following iteration sequence:x0 ∈ H,

xk+1 = S(xk)− λF (S(xk)), ∀k ≥ 0.

Under the assumptions of β−strongly monotone and L−Lipschitz contin-

uous of the cost mapping F , and λ ∈ (0, 2βL2 ), the iteration sequence {xk}
strongly converges to a unique solution of the problem V IF (Ω, F ). Ex-

tending this result of Yamada, I., Xu, H.K. proposed an iterative rotation

algorithm with the constraint domain of the problem as a fixed point set of

a finite family of non-expansive maps. Subsequently, Iemoto, S. and Taka-

hashi, W. studied an extension of the algorithm for a constraint domain
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that is an infinite family of non-expansive maps. Some interesting research

results on general monotone cost mappings and the constraint domain Ω is

the intersection of pseudo-contraction maps (or quasi-nonexpansive maps)

proposed by many authors, such as approximation methods, inertial relax-

ation methods, projection methods under derivatives, inertial contraction

methods and some others.

As we know, a point x∗ ∈ C is a solution of the variational inequality

problem V I(C,G) (here G : H → H) if and only if it is a fixed point of

the solution mapping S : H → C as follows:

S(x) = ΠC [x− λG(x)], ∀x ∈ H,

where λ > 0. In this case, the variational inequality problem on the fixed

point set V IF (Ω, F ) with Ω := Fix(S), denoted by BV I(C,F,G), as

follows:

Find u ∈ Ω such that ⟨F (u), x− u⟩ ≥ 0, ∀x ∈ Ω,

where Ω = {x∗ ∈ C : ⟨G(x∗), y − x∗⟩ ≥ 0, ∀y ∈ C}.
The problem V IF (Ω, F ) is a difficult problem, because the constraint

domain Ω is the intersection of fixed point sets of the maps and is not given

in explicit form. According to our understanding of current algorithms for

solving variational inequality problems on fixed point set V IF (Ω, F ), there

are some salient points as follows:

- Convergence of the algorithms requires strongly monotone and Lips-

chitz continuous assumptions of the cost mapping F or some (rather

complicated) regular monotonicity assumption;

- Iterative algorithms are not really efficient on computers, when the

constraint domain C is complex. At each iteration in some algorithms,

the iteration sequence is computed as a solution to another variational

inequality problem. The convergence of the algorithm requires the

exact solution at each iteration, however, the actual computation on

the computer can only give an approximate solution with errors;
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- Algorithms and calculations applied to practical models still have

many limitations.

For the above reasons, we chose to research the thesis topic “Some meth-

ods for solving variational inequality problems over fixed point sets”. With

the main goal of proposing new algorithms to solve the V IF (Ω, F ) prob-

lem, we have studied and expanded the methods in optimization and fixed

point iteration techniques, such as hybrid techniques, inertial techniques,

iteration techniques, relaxed projection techniques, . . .. The strong and

weak convergence of the proposed algorithms is demonstrated, illustrative

examples and comparisons with other popular results are programmed and

calculated on Matlab software.

The content of the thesis is written based on the results of 4 articles, of

which 3 articles were published in SCIE journals ranked Q2, 1 article was

published in Scopus journal.

In addition to the table of contents, list of symbols and abbreviations,

introduction and references, the main content of the thesis is divided into

3 chapters as follows:

� Chapter 1: Variational inequality problems on fixed point sets.

� Chapter 2: Inertial techniques

� Chapter 3: Relaxed solution mapping method.
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Chapter 1

Variational inequality problem on

fixed point set

In the first chapter of the thesis, we review some basic concepts and

knowledge in functional analysis and convex analysis, as a basis for research

in the following chapters. In addition, the concepts of variational inequality

problems over fixed point sets, the existence of solutions, auxiliary lemmas,

image processing models and some common methods to solve variational

inequality problems over fixed point sets such as: Iteration method, hybrid

method, projection method are also presented in this chapter. The content

of chapter 1 is written based on some results in reference documents Pham

Ngoc Anh (2015) Hoang Tuy (2003), Bauschke, H.H., Combettes, P.L.

(2011), Carl, S., Le, V.K. (2021), Ding, X.P., Lin, Y.C., Yao, J.C. (2007),...
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1.1 Some basic concept

1.1.1 Projection and monotone mapping

1.1.2 Variational inequality problem

1.1.3 Fixed point problem

1.1.4 Some basic lemmas

1.2 Variational inequality problem on fixed point set

1.2.1 Problem statement and examples

1.2.2 Some special cases

1.2.3 Image processing model

1.2.4 Some common algorithms to solve the problem V IF (Ω, F )
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Chapter 2

Inertial techniques

2.1 Hybrid inertial contraction technique

In an extended study of the variational inequality problem V I(C,F ),

Yamada, I. replaced the constraint domain C with the fixed point set of

a mapping, the solution of the problem was found through the hybrid

steepest descent algorithm (HSDA). From this method, we proposed the

algorithm (HICA) to solve the variational inequality problem over fixed

point set V IF (Ω, F ), the algorithm is a combination of the inertial tech-

nique and the hybrid method. The strong convergence result is proven in

a real Hilbert space H. The (PIPA) algorithm is a combination of paral-

lel computing techniques with inertial techniques to solve the variational

inequality problem over fixed point set V IF (Ω, F ), where Ω is the intersec-

tion of the fixed point sets of the demicontractive maps Ω =
⋂

i∈J FixSi,

J = {1, 2, . . . ,m}. The last part shows illustrative calculations, appli-

cations in image processing models and comparisons with some popular

algorithms.

The content of this chapter is written based on two articles [CT1] and

[CT3] (List of works related to the thesis).

2.1.1 Algorithm (HICA)

Let F : H → H be a cost mapping and let the family of mappings

Si : H → H, ∀i ∈ I satisfy the following assumptions:
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(A1) The mapping F is β-strongly monotone and L-Lipschitz-continuous;

(A2) For every i ∈ I, Si is ξi−demicontractive, satisfying condition (Z) and

Ω :=
⋂
i∈I

Fix(Si) ̸= ∅;

(A3) For every k ≥ 0, the positive parameters βk, γk, τk, λk and µk satisfy

0 < c1 ≤ βk ≤ c2 < 1, µk ≤ η,

αk ∈ (0, 1− ξk], infk αk > 0,

0 < γk < 1, lim
k→∞

γk = 0,
∑∞

k=1 γk = ∞,

lim
k→∞

τk
γk

= 0, λk ∈
(

β
L2 ,

2β
L2

)
, a ∈ (0, 1),√

1− 2λkβ + λ2
kL

2 < 1− a.

(2.1)

Algorithm 2.1. Hybrid inertial contraction algorithm (HICA)

Initialization: Let x0, x1 ∈ H be arbitrary. At the kiteration, k = 1, 2, . . ..

Step 1. Compute the inertial coefficient

θk =

 min

{
µk,

τk
∥xk − xk−1∥

}
if ∥xk − xk−1∥ ≠ 0,

µk otherwise,

(2.2)

Step 2. Compute

wk = xk + θk(x
k − xk−1),

S̄kw
k = (1− αk)w

k + αkSkw
k,

zk = (1− γk)S̄kw
k + γk

[
wk − λkF (wk)

]
,

S̄kz
k = (1− αk)z

k + αkSkz
k,

xk+1 = (1− βk)S̄kw
k + βkS̄kz

k.

(2.3)

Step 3. Set k := k + 1 and go back to Step 1.

2.1.2 Convergence theorem

Theorem 2.1. Suppose that the assumptions (A1), (A2) and (A3) are sat-

isfied. Then the iteration sequence {xk} given by Algorithm 2.1 strongly

converges to the unique solution x∗ of the problem V IF (Ω, F ).
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2.1.3 Calculation examples

In this section, we present some numerical experiments on computers to

illustrate the convergence of the (HICA) algorithm and compare it with

two algorithms: the Parallel Projection Algorithm (PPA) by Anh, P.N.

and colleagues and the Hybrid Gradient Algorithm (HSDA) by Yamada,

I. All computational experiments are programmed in MATLAB R2016a,

running on a PC with an Intel® Core� i7-7800X CPU @ 3.50 GHz 32 GB

Ram.

2.2 Inertial parallel approximation technique

2.2.1 Algorithm (PIPA)

Given x0, x1 ∈ H and the parameters satisfy the following conditions

a ∈ (0, 1), {λk} ⊂ [a, â] ⊂
(
0,

2β

L2

)
,√

1− 2λkβ + λ2
kL

2 < 1− a,

ζk ∈ (0, 1),
∞∑
k=1

ζk = ∞, lim
k→∞

ζk = 0,

0 ≤ τk ≤ ζ2k , µk > 0,

γk,i ∈ (b, b̂) ⊂ (0, 1−max{βi : i ∈ J}).

(2.4)

Step 1: Compute:

wk = xk + αk(x
k − xk−1), (2.5)

with

αk =

 min

{
τk

∥xk − xk−1∥
, µk

}
if ∥xk − xk−1∥ ≠ 0,

µk otherwise.

(2.6)

Step 2: Compute uki = (1− γk,i)w
k + γk,iSiw

k.

Set tk = uki0, where i0 ∈ argmax
{∥∥uki − wk

∥∥ : i ∈ J
}
.

Step 3: Compute

xk+1 = (1− ςk) t
k + ςk

[
tk − λkF

(
tk
)]

. Set k = k + 1 and go to Step 1.



10

2.2.2 Convergence theorem

Theorem 2.2. Let F : H → H be a βi−strongly monotone and L-Lipschitz

continuous map and the family Si : H → H be demicontractive and demi-

closed at 0 maps for all i ∈ J . Under the conditions (2.4) and Ω ̸= ∅,
the sequence {xk} given by (PIPA) Algorithm strongly converges to the

unique solution x∗ of the problem V IF (Ω, F ).

2.2.3 Apply to image restoration model

In this section, we apply the (PIPA) algorithm to restore images in

Euclidean space H = Rs, the image restoration algorithm has the following

form:

Algorithm 2.2. Choose the starting point as any x0, x1 in Rs.

Step 1: Calculate

wk = xk + αk(x
k − xk−1),

with

αk =

 min

{
τk

∥xk − xk−1∥
, µk

}
if ∥xk − xk−1∥ ≠ 0,

µk otherwise.

(2.7)

Step 2: Calculate

uki = (1− γk,i)w
k + proxϵif2 (E − ϵi∇f1)

(
wk

)
.

Set tk = uki0, therein i0 ∈ argmax
{∥∥uki − wk

∥∥ : i ∈ J
}
,

Step 3: Calculate

xk+1 = (1− ςk) t
k + ςk

[
tk − λkF

(
tk
)]

.

Set k = k + 1 and go back to step 1.
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Chapter 3

Relaxed solution mapping method

When studying the mapping of solutions to the variational inequality

problem, we develop based on some results on the nonexpansive of Yamada,

I., we propose new results on the quasinonexpansive of relaxed mappings

of solutions. The mapping of solutions is an extension of the projection on

the set C to a projection on a half-space. Then, we propose the relaxed

projection algorithm (RLPA) to solve the variational inequality problem,

where the constraint domain is the intersection of the fixed point set and

the solution set of another variational inequality problem. This result has

been published in [CT4] (List of works related to the thesis). Further-

more, we propose the contraction projection algorithm (PCA) to solve

the variational inequality problem over the fixed point set of the mapping

of solutions BV I(C,F,G) in Rn. These results are published in [CT2].

The application of the (RLPA) and (PCA) algorithms with illustrative

calculations and comparisons with other algorithms has been performed

on Matlab software.

3.1 Relaxed projection method

3.1.1 Algorithm (RLPA)

By combining the conventional projection and the relaxed projection

onto the half-space, we construct the algorithm (RLPA) to solve the vari-

ational inequality problem over fixed point set, which is stated as follows:
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Let C be a nonempty, closed, convex subset of a real Hilbert space H
and let the maps F : H → H, G : H → H and Ξ : H → H.

Find u ∈ Ω such that ⟨G(u), x− u⟩ ≥ 0, ∀x ∈ Ω, (3.1)

where, the set Ω = Fix(Ξ) ∩ Sol(C,F ), in which the fixed point set

Fix(Ξ) = {x ∈ H : x = Ξx}, and the set Sol(C,F ) is the solution set

of problem V I(C,F ). The price functions F , G and the sequence of pa-

rameters satisfy the following assumptions:

(B1) The set Ω is non-empty;

(B2) The price map F is pseudomonotone, LF−Lipschitz continuous and

weakly continuous on C;

(B3) The price map G is β−strongly monotone and LG−Lipschitz contin-

uous;

(B4) The map Ξ is nonexpansive and satisfies the I − S property demi-

closed at 0;

(B5) For every natural number k ≥ 0, the positive parameters ξk, γk, τk, αk, τ

and ν satisfies the following conditions:

ν ∈ (0,min{1, 1
LF

}), a ∈ (0, 1− νLF ),

b > 0, ξk ∈
(
b,min

{
1
LF

,
√

ν
LF

})
, ξ = lim

k→∞
ξk,

γk ∈
(
0,min

{
1−ξ2kL

2
F

2 , 1−νLF−a
2

})
,

τk ∈ (c, d) ⊂ (0, 1), τ ∈ (0, 2β
L2
G
),

αk ∈ (0, 1), lim
k→∞

αk = 0,
∞∑
k=0

αk = ∞.

Algorithm 3.1. (Relaxed projection algorithm (RLPA))

Choose x0 ∈ H, k = 0, ν > 0, choose the positive number sequences

{ξk}, {γk}, {τk} and {αk},
Step 1. Find the projection

yk = ΠC [x
k − ξkF (xk)],

Step 2. Compute wk = xk − νξkF (yk) and tk = τkz
k + (1− τk)Ξz

k, where

zk =

wk − dk
∥xk−ξkF (xk)−yk∥2 (x

k − ξkF (xk)− yk) if dk > 0,

wk otherwise,
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with dk = ⟨xk − ξkF (xk)− yk, wk − yk⟩ − γk∥yk − xk∥2,
Step 3. Compute xk+1 = tk − αkτG(tk). Set k := k + 1 and go to Step 1.

3.1.2 Solution mapping

For each x ∈ H and ξ > 0, we call S : H → C the solution mapping of

problem V I(C, F ), given as follows:

Sx = ΠC [x− ξF (x)]. (3.2)

We know that x ∈ C is a solution to problem V I(C,F ) if and only if it is a

fixed point of the solution mapping S. Given γ > 0, we call the half-space

Hx as follows:

Hx =
{
w ∈ H : ⟨x− ξF (x)− Sx,w − Sx⟩ ≤ γ∥x− Sx∥2

}
. (3.3)

Let K be the solution set of problem V I(C, F ). From the definition of

projection ΠC and from (3.2), we have:

⟨x− ξF (x)− Sx, y − Sx⟩ ≤ 0, ∀y ∈ C,

therefore:

⟨x− ξF (x)− Sx, y − Sx⟩ ≤ γ∥x− Sx∥2, ∀y ∈ C.

Then, C ⊂ Hx for all x ∈ H. On the other hand, for each z ∈ H, the

projection of z on Hx is given in the following explicit form:

ΠHx
(z) =

z − ⟨x−ξF (x)−Sx,z−Sx⟩−γ∥x−Sx∥2
∥x−ξF (x)−Sx∥2 (x− ξF (x)− Sx) if z /∈ Hx,

z otherwise.

(3.4)

Next, we define the solution mapping T : H → H of the problem VI(C,F ),

as follows:

Tx = ΠHx
[x− νξF (Sx)], (3.5)

with parameter ν > 0.

The following lemma shows some important properties of the mappings

T and S.
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Lemma 3.1. Suppose the set K is not empty, which is the solution set of

problem VI(C,F ). We have the following assertions:

(i) If F is quasi-monotone on K and L−Lipschitz-continuous, ξ ∈ (0, 1
L), γ ∈

(0, 1−ξ2L2

2 ) and ν ∈
(
ξ2L,min

{
1−2γ
L , 1

})
, then T is strongly quasinon-

expansive on K. Furthermore, for all x ∈ H, x∗ ∈ K,

∥Tx− x∗∥2 ≤∥x− x∗∥2 − ν(1− νL− 2γ)∥x− Sx∥2

− (ν − ξ2L)∥Tx− Sx∥2 − (1− ν)∥Tx− x∥2. (3.6)

(ii) If F is η−strongly inverse quasimonotone on K, then S is strongly

nonexpansive quasimonotone on K provided m ∈ ( ξ
2η , 1−2γ), γ ∈ (0, 12)

and 0 < ξ < 2η(1− 2γ). Furthermore, for all x ∈ C,

∥Sx− x∗∥2 ≤∥x− x∗∥2 − 2ξ

(
η − ξ

2m

)
∥F (x)− F (x∗)∥2

− (1−m− 2γ)∥x− Sx∥2.

(iii) If F is ζ− strongly quasimonotone on K and L− Lipschitz continuous

on H, then S is quasicontractive with constant δ := 1√
1+2ξζ−ξ2L2

∈

(0, 1), with ξ ∈ (0, 2ζ
L2 ).

3.1.3 Convergence theorem

The following lemmas are used to prove the convergence of the iteration

sequence in the (RLPA) algorithm.

Lemma 3.2. Let {xk} and {yk} be two sequences generated by Algorithm

3.1 and let x∗ ∈ K. Then, with the assumptions (B1), (B2) and (B4), we

have the following assertion:

∥zk − x∗∥2 ≤ ∥xk − x∗∥2 − ν(1− νLF − 2γk)∥xk − yk∥2

− (ν − ξ2kLF )∥zk − yk∥2 − (1− ν)∥zk − xk∥2. (3.7)

Lemma 3.3. Suppose the sequence {xk} generated by the algorithm (RLPA)

is bounded and {xkj} ⊂ {xk} is such that xkj ⇀ x̄, satisfies lim
j→∞

∥xkj −
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ykj∥ = 0 with {ykj} being the corresponding subsequence. Then, x̄ ∈
Sol(C,F ).

Theorem 3.1. Given the cost mapping F and G satisfying the assump-

tions (B1), (B2), (B3), (B4) and the parameters satisfying the condition

(B5), the two sequences {xk} and {yk} in the (RLPA) Algorithm strongly

converge to the unique solution u of Problem 3.1.

3.1.4 Illustrative calculation

3.2 Contraction projection method

3.2.1 Algorithm (PCA)

We consider the bilevel variational inequality problem BV I(C,F,G), as

follows:

Findx∗ ∈ Sol(C,F ), such that ⟨G(x∗), x− x∗⟩ ge0, ∀x ∈ Sol(C,F ),

(3.8)

where, the cost mapping F : C → Rn is such that F (x) = Qx + q, the

matrix Q ∈ Rn×n is an symmetric matrix, q ∈ Rn is a vector, chosen such

that F is pseudomonotone, and the constraint domain C is given as follows

C = {x ∈ Rn : Ax ≥ b} ,

where, A ∈ Rm×n is a matrix and vector b ∈ Rm. The cost mapping

G : C → Rn satisfies the condition

(C1) G is strongly monotone with coefficient β > 0,

⟨G(x)−G(y), x− y⟩ ≥ β∥x− y∥2, ∀x, y ∈ C;

(C2) G is Lipschitz continuous with coefficients L > 0,

∥G(x)−G(y)∥ ≤ L∥x− y∥, ∀x, y ∈ C.

Algorithm 3.2. Projection contraction algorithm (PCA)
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Step 1. Given x0 ∈ C, η > 0 and
τ := 1−

√
1− µ(2β − µL2)

η > max

{
−6τ1(Q),

L∥Q∥(L+
√

L2−β2)

β2 , −2τ1(Q)(β2+L2)
β2

}
,

µ ∈
(
0, 2βL2

)
, αk ∈

(
0, 2µβ−2τ

µ2L2−τ2

)
,

∞∑
k=0

αk = ∞,
∞∑
k=0

α2
k < ∞.

(3.9)

Step 2. (k = 0, 1, ...) Calculate yk

yk = argmin

{
1

2
⟨Qx, x⟩+ ⟨q, x⟩+ η

2
∥x− xk∥2 : x ∈ C

}
, (3.10)

xk+1 = ΠC

[
yk − µαkG(yk)

]
.

Step 3. Set k := k + 1, go back to Step 2.

3.2.2 Convergence theorem

The following theorem shows the convergence of the 3.2 Algorithm.

Theorem 3.2. Suppose the cost functions F, G satisfy the assumptions

(C1), (C2), the sequences {xk} and {yk} in the Algorithm 3.2 strongly con-

verge to the unique solution x∗ of the problem BV I(C,F,G).

3.2.3 Compute error

In this section, we present the computational error of the Algorithm 3.2,

applied to solve the problem BV I(C,F,G). At the iteration k ≥ 0, from

the algorithm we calculate the elements yk and xk+1, assuming∥∥∥∥yk − argmin

{
1

2
⟨Qx, x⟩+ ⟨q, x⟩+ η

2
∥x− xk∥2 : x ∈ C

}∥∥∥∥ ≤ ϵ, (3.11)∥∥xk+1 − ΠC [y
k − µαkG(yk)]

∥∥ ≤ ϵ, (3.12)

the ϵ error usually depends on our computer system. When calculating

on a computer, the sequences {xk} and {yk} do not necessarily converge

to the solution x∗ of the problem BV I(C,F,G). For each ν > 0, the

element xk generated by the 3.2 Algorithm is called a ν−solution of the

problem BV I(C,F,G) if ∥xk+1 − xk∥ ≤ ν. Therefore, for each number
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χ > 0, we define the set Solχ as the set of all χ−solutions of the problem

BV I(C,F,G),

Solχ = {x̄ ∈ C : ∥xk+1 − xk∥ ≤ χ}.

Set ŷk = argmin
{
1
2⟨Qx, x⟩+ ⟨q, x⟩+ η

2∥x− xk∥2 : x ∈ C
}
,

x̂k+1 = ΠC [ŷ
k − µαkG(ŷk)].

Suppose that there exist σ > 0 and δ > 0 such that

C ⊆ B(x∗, σ), ⟨G(C), C⟩ := {⟨G(x), y⟩ : x, y ∈ C} ⊆ B(0, δ).

Choose coefficients that satisfy the condition (3.9) and0 < ϵ < ϵ̄, ϵ̄2 > 4µαkδ + ϵ2(1 + τ)2,

Γη :=
ηϵ̄2

η+2τ1(Q) +
2τ1(Q)σ2

η+2τ1(Q) − 4µαkδ − ϵ2(1 + τ)2 − 2ϵ(1 + τ)σ.
(3.13)

Note that limη→∞ Γη = ϵ̄2 − 4µαkδ − ϵ2(1 + τ)2 > 0, then there exist

coefficients satisfying (3.13).

Theorem 3.3. Suppose that

(i) Sol(C,F ) ̸= ∅;

(ii) 2µαkδ ≤ ϵ2, conditions (3.9) and (3.13), and assumptions C1−C2 are

satisfied. Choose a positive number K such that

K >
4σ2

Γη
;

(iii) The sequences {xk} and {yk} are obtained from the formulas (3.2)-

(3.12).

Then, there exists a natural number j ∈ [0, K] such that

(a) ∥xj − yj∥ ≤ 2ϵ̄;

(b) ∥xk − yk∥ > 2ϵ̄, ∀k = 0, 1, ..., j − 1;

(c) xj ∈ Solϵ, here ϵ := 2ϵ̄+ 3ϵ.
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3.2.4 Calculation examples

In this section, we present some computational examples for the (PCA)

algorithm, the experiments are programmed on MATLAB R2014a soft-

ware with PC, Intel(R) Core(TM) i5-7360U CPU @ 2.30GHz 8.00GB Ram.

Besides, we compare the efficiency of the (PCA) algorithm with the ap-

proximate derivative algorithms (PV SA) of Maingé and the augmented

derivative algorithm (ExtrA) of Anh, P.N. et al., in the case where the

cost mapping F is pseudomonotone.
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Conclusions

The thesis focuses on studying methods for solving variational in-

equality problems over fixed point sets. New solution algorithms are stud-

ied based on iteration methods, projection methods, inertial techniques,

principle of auxiliary problem and techniques in Optimization Theory.

1. The main contents of the thesis include

(i) The hybrid inertial contraction algorithm (HICA) was developed by

us from the iterative technique of Yamada, I. combined with the iner-

tial technique to solve the problem V IF (Ω, F ), where the constraint

domain Ω is the fixed point set of the infinite family of demicontrac-

tive maps. The advantage of the algorithm is that it only uses the

approximate calculation method, does not use projection, contribut-

ing to increasing the speed of numerical solution on computers. The

results of the algorithm have been published in the work [CT1].

(ii) The inertial parallel approximation algorithm (PIPA) is built from in-

ertial techniques and parallel computing, to solve the problem V IF (Ω, F ),

with the price map F strongly monotone and Lipschitz continuous, the

constraint domain Ω is the fixed point set of m demicontractive maps.

We have applied the (PIPA) algorithm to the image processing model,

to restore images that have been blurred by Gaussian or Motion type.

At that time, we have shown the advantages of this algorithm when

calculating and comparing with some other image restoration algo-

rithms. The results of this algorithm are published in [CT3].

(iii) The relaxed algorithm (RLPA) is built based on the combination of

direct projection onto the constraint domain C and relaxed projection
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onto a half-space. In this algorithm, we have applied finding solutions

to the variational inequality problem on the intersection of the fixed

point set of a projection and the solution set of another variational

inequality. This result is published in [CT4].

(iv) Considering the variational inequality problem on the fixed point set of

the solution map BV I(C,F,G), we construct the contraction projec-

tion algorithm (PCA) from the direct projection onto the set C and a

sub-problem using the DC decomposition technique. The convergence

of the iterative sequences to an optimal solution has been shown. The

efficiency of the algorithm is calculated through numerical examples

and comparison results with other algorithms. The convergence and

computational results of the (PCA) algorithm are published in [CT2].

2. Recommendations for further studies

In addition to the results achieved in the thesis, we can research in the

following directions:

� Research on algorithms for solving variational inequality problems on

fixed point sets, aiming to improve speed and computation time by

combining Mann iteration methods, Halpern iteration, and parallel

computing techniques. song,. . .

� Evaluate the error and convergence speed of some algorithms proposed

in the thesis, how to choose parameter sets to get better convergence.

� Research new algorithms to relax the conditions placed on price maps,

while reducing the projections in each iteration of the algorithm.

� Extend the solution of two-level variational inequality problems to

more complex multi-level or constrained domain problems.
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