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INTRODUCTION

1. Motivation and history of the problem

In the theory of differential equation, the terminology “nonlocal differential equation” is

employed to indicate differential equations in which the derivative of state functions is defined

not only at point-wise but determined by an integral formulation (it is also said to be “derivative

with memory”). A typical class of nonlocal differential equations given below is utilized to

describe anomalous diffusion phenomena

∂t
(
k ∗ [u− u(0)]

)
= ∆u, (1)

where u = u(t, x) is state function, the kernel k ∈ L1
loc(R+), ‘*’ denotes the Laplace convolution,

i.e., (k ∗ v)(t) =
∫ t

0
k(t − s)v(s)ds and ∆ is the Laplace operator. This class of differential

equations have been studied by many mathematicians. Readers can see some typical results on

the anomalous diffusion equations in the works given by Ke (2020), Kemppainen (2016), Pozo

(2019), Vergara (2015). In particular, when

k(t) = g1−α(t) =
t−α

Γ(1− α)
, t > 0, α ∈ (0, 1), (2)

equation (1) is the subdiffusion equation, which has been the subject of study by many math-

ematicians over the past two decades. Equation (1) with the kernel k given by (2) is in the

form of fractional differential equations (FrDEs). It is obviously that the fractional derivative

equations are excellent models for nonlocal differential equations, they have been attracted many

attentions of researcher in recent years.

FrDE is the research direction of fractional analysis proposed in 1695 by Leibniz and Euler

then developed by many mathematicians such as Laplace, Fourier, Liouville, Riemann, Laurant,

Hardy, and Riesz,..., see Kilbas (2006), Miller (1993), Sabatier (2007) and Podlubny (1999). In

the past few decades, many applications of fractional analysis in general and FrDE in particular

have been found in the science and technology disciplines, such as problems related to electro-

chemical chemistry, rheology, porous materials, elastic materials, fractal materials,... Details

of some problems described by FrDE can be found in monographs (see Hilfer (2000), Sabatier

(2007), Shantanu. (2011) and Podlubny (1999)). FrDE’s growing range of applications has

prompted a lot of qualitative research in recent years.

One of the most important questions in the study of integro-differential equations is the

behavior of solutions. In the scope of this thesis, behavior of solutions of NDE includes questions

about short-time behavior of solutions, the stability and the existence of decay solutions.

In the past two decades, the stability question for FrDE in finite and infinite dimensional

space has received much attention by many domestic and foreign mathematicians. Concerning

finite dimensional FrDEs, the problem of studying the stability has achieved many basic and

systematic results. The Lyapunov function method to study stability for FrDE was proposed by
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Lakshmikantham (2008). Then, this method is applied to study the stability for many classes

of FrDEs such as: impulsive FrDE (see Agarwal (2016)), functional differential equations of

fractional order (see Stamova (2016)), ... (see also Li’s survey article (2011)). Stability conditions

for linear FrDE expressed by fractional Lyapunov exponent and the linearized stability for semi-

linear FrDE were studied by Cong (2014, 2016). In addition, using some other tools such as

Gronwall inequality, comparison principle or Mittag-Leffler matrix function, several results on

finite-time stability have obtained in the works of Kinh (2016), Lazarevic (2009), Li (2017) and

Zhang (2016).

Regarding infinite dimensional FrDEs, stability results have been less known. In fact, using

Lyapunov functional method is not impractical because the phase spaces are infinite dimensions

and it is difficult to calculus the fractional derivative of Lyapunov function. Therefore, to study

the stability for FrDE in infinite dimensional space, we need to develop new approaches.

Recently, the stability analysis in the sense of Lyapunov for a class of semilinear diffusion-

wave equations involving impulsive effects and finite delays by using the fixed point approach.

Anh and Ke (2015) established the existence of decay integral solutions for a class of neutral

fractional differential equations in Banach spaces with unbounded delays by using the fixed

point theory for condensing maps. Some other results on solvability, asymptotic stability, and

existence of decay solutions for FrDE in infinite dimensional space can be referred to the works

of Anh (2014), Ke (2014), Wang (2012) and Zhou (2010).

Finite-time dynamics has been studied extensively in the last two decades. The first motiva-

tion for the study is that, in analyzing the dynamics governed by the differential equation

ẋ(t) = f
(
x(t)

)
, (3)

one just gets the computed vector field in a bounded time-interval, i.e. t ∈ [t0, t1]. Even in the

case (3) is given on the half-line, one may be interested in transient behavior of solutions, that

is, the behavior on a compact interval [t0, t1]. The motivation for this study is that some model

related to transport problems in fluid, biochemical networks or signal transduction (see Berger

(2008), Rateitschak (2010)), in which processes happen in short time. Therefore the study of

transient behavior plays a fundamental role and is physically more relevant than asymptotic

behavior as t→∞. In this thesis, we use a concept of finite time dynamical for nonautonomous

system in finite dimensional spaces proposed by Giesl (2012) to analyze the behavior of solutions

at terminal time. A solution y of (3) is said to be attractive on [0, T ] if there exists η > 0 such

that for every solution x(·, ξ) of (3) with initial datum ξ, it holds that

‖x(T, ξ)− y(T, y(0))‖ < ‖ξ − y(0)‖, ∀ξ ∈ Bη(y(0))\{y(0)},

here Bη(y0) stands for the ball centered at y0 with radius η. If one has

lim sup
η↘0

1

η
sup

ξ∈Bη(y(0))

‖x(T, ξ)− y(T, y(0))‖ < 1,

then the solution y is called exponentially attractive on [0, T ]. We refer to Berger (2011, 2008),

Giesl (2012) and Haller (1998) for recent studies related to finite-time attractivity for ordinary
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differential equations. As far as we know, the finite-time attractivity analysis has not been made

for FrDE in infinite dimensional space, especially for the class of equations which are reduced

to the subdiffusion equations. Therefore we study the finite time attractivity for semilinear

subdiffusion equations

d

dt

(
g1−α ∗ [u− u(0)]

)
(t) = Au(t) + f

(
u(t)

)
, (4)

on the bounded time interval [0, T ], where the state function x(·) takes values in a Banach

space X, A is a closed linear operator on X which generates a strongly continuous semigroup,

f : X → X is a nonlinear function. Here g1−α ∗ v, for v ∈ L1
loc(R+;X), denotes the Laplace

convolution.

NDEs like (4) with A standing for second order elliptic partial differential operators have

been used in mathematical physics to model dynamic processes in materials with memory. As

mentioned in Kemppainen (2016), by replacing g1−α with another locally integrable kernel, one

can use the linear part of (4) to express many processes involving subdiffusion, superdiffusion

and ultraslow-diffusion.

Using the Gronwall type inequality and local estimates of solutions (estimates with small

initial data), we obtain the results on finite-time attractivity of the trivial solution (the zero

solution) and of the nonzero solutions for equation (4).

In fact, when we establish a mathematical model for a real life problem by using an evolution

system, there are usually two cases. In the first case, we can determine the initial datum

and coefficients appearing in the system. Then we can solve or study qualitative properties of

solutions by analysis methods. We call them forward problems. In the second case, we can not

find every coefficients or are unable to measure the initial data. Then we have to determine

not given coefficients or the initial values by added measurements. In this case, we face to a

problem named inverse one. It is worth to emphasize that the inverse problems are ill-posed in

Hadamard sense. Theses problems are more complicated, they require suitable approach in each

concrete case. Therefore, the methods applied to inverse problems are very diverse.

The inverse problems for fractional derivative equations have been attracted attentions of

mathematician in decades. There has been a number of results devoted to linear problems,

where the source terms are determined by using the technique of eigenfunction expansion (see

e.g., Kirane (2013), Sakamoto (2011), Wei (2013) and Zhang (2011)), the regularization method

(Ruan (2017), Wei (2016)), the analytic Fredholm theorem (Tatar (2015)), or the unique continu-

ation method (Jiang (2017)). In addition, the reader is referred to Jin (2015) and Kaltenbacher

(2019) for various type of inverse problems for time-fractional diffusion equations, where the

parameter to be identified can be initial data, sources, or other coefficients in the dynamic

equation.

In comparison with linear cases, inverse problems of nonlinear type are much more involved

and related results have been less known. In Luchko (2013), the problem of determining non-

linear source term was carried out by the aid of the maximum principle for fractional diffusion

equations. Slodicka and Siskova (2016) employed the discretization method to deal with a prob-
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lem of identifying the time-dependent source in a semilinear fractional diffusion equation. In

Tatar and Ulusoy (2017), to determine the nonlinear diffusion term in a fractional diffusion equa-

tion, the optimization method was utilized. Dealing with an inverse source problem governed

by a semilinear fractional wave equation in Wu (2014), the fixed point approach was chosen to

prove a local existence result. Dwelling on this result, it is worth noting that, the local existence

can not be extended to global one by continuation arguments as in the case of integer-order

differential equations, due to the fact that solutions of fractional differential equations do not

possess the semigroup property. We refer to Lorenzi (2012), (2014) for more results on inverse

source problems that were done by using the fixed point technique.

In this thesis, we consider the problem of identifying parameter in a class of fractional dif-

ferential variational inequalities (FrIP): For ξ, ψ ∈ X, find (x, u, z) satisfying the fractional

differential variational inequality

Dα
0 x(t) = Ax(t) +B(u(t))z + h(x(t)), t ∈ (0, T ], (5)

〈F (x(t)) +G(u(t)), v − u(t)〉 ≥ 0, ∀v ∈ K, t ∈ [0, T ], (6)

x(0) = ξ, (7)

and the condition ∫ T

0

ϕ(s)x(s)ds = ψ, (8)

where X be a Banach space, U a Hilbert space, K is a closed convex set in U , (x, u) takes

values in X × U , z ∈ X, Dα
0 , α ∈ (0, 1), is the fractional derivative in the Caputo sense. In this

model, A is a closed linear operator on X, ϕ ∈ C1([0, T ];R) is a nonnegative nontrivial function,

B : U → R, h : X → X, F : X → U∗ and G : U → U∗ are given maps and the notation 〈·, ·〉
stands for the canonical pairing between U and its dual U∗.

Differential variational inequalities (DVIs) appear as a system which contains an evolution

equation subject to a constraint formed by a variational inequality. DVIs were first systematically

studied by Pang and Stewart (2008) as a general model for differential-algebraic equations,

differential complementarity problems, etc. As a matter of fact, DVIs have been chosen to

depict models, where dynamics and optimization intersect.

Let us mention some special cases of (5)-(6). Assume that X = Rn, K = U = Rm. Then our

system has the following form

Dα
0 x(t) = F̂ (x(t), u(t), z), t ∈ (0, T ],

Ĝ(x(t), u(t)) = 0, t ∈ [0, T ],

where F̂ (x(t), u(t), z) = Ax(t)+B(u(t))z+h(x(t)) and Ĝ(x(t), u(t)) = F (x(t))+G(u(t)), which

is a differential-algebraic equation. This has been used, e.g., in modeling electric circuits as

described in Pang (2008).

Now suppose that Ω ⊂ Rn is a bounded smooth domain, X = U = K = L2(Ω), A = ∆ is

the Laplacian associated with homogeneous Dirichlet boundary condition, and G = −∆. Then

(5)-(6) can be interpreted as

∂αt y = ∆y + ĥ(y, u, z) in Ω× (0, T ],
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−∆u+ F (y) = 0 in Ω× [0, T ],

y = u = 0 on ∂Ω× [0, T ],

where ∂αt stands for the Caputo derivative in t of order α, ĥ(y, u, z) = B(u)z + h(y). The latter

is of parabolic-elliptic system type, that has been employed for study of the motion of bacteria

by chemotaxis (see Jäger (1992)), and image inpainting (see Jin (2010)).

Fractional DVIs were first introduced in Loi (2016), where the solvability is proved by using

topological methods. In Ke (2015), some qualitative properties for a class of fractional DVIs were

established. It should be mentioned that the models of fractional DVIs in Loi (2016) and Ke

(2015) are formulated in finite dimensional spaces. If the evolution equation in DVIs represents

a partial differential equation (PDE), we get infinite dimensional DVIs, which are the subject

of recent investigations in Anh (2017), Liu (2017), (2016). In the last mentioned works, some

questions related to existence and asymptotic behavior of solutions to DVIs associated with the

first-order evolution equations in Banach spaces were addressed.

In this thesis, we propose a question on identifying the constraint term of the fractional DVI

(9)-(11). More specifically, in the expression B(u(t))z of equation (9), the factor B(u(t)) stands

for the magnitude of constraint, the factor z ∈ X is interpreted as the direction of constraint

and supposed to be unknown. This factor will be identified by using the measurement condition

(12).It is worth noting that, this condition is regarded as the mean value of the state function

taking over [0, T ] in the case ϕ(t) = T−1. The problem (FrIP) will be solved as follows. Under

the assumption that A is a sectorial operator, we show that any integral solution to (9)-(11) is

classical. Then by using the Schauder fixed point theorem, we prove the global existence of a

triple (x, u, z) for given datum (ξ, ψ). With an additional assumption that the Lipschitz constant

of F is small, we show the uniqueness and stability of solution by pointing out that the map

(ξ, ψ) 7→ (x, u, z) is locally Lipschitzian as a map fromX×D(A) to C([0, T ];X)×C([0, T ];U)×X.

Moreover, in this thesis we are interested in two other NDE classes that have been recently

studied in fluid dynamics. The first NDE class is concerned with the Basset type equation of

the following form

d

dt

(
k0u+ k ∗ [u− u(0)]

)
(t) + Au(t) = f

(
u(t)

)
, t ∈ (0, T ] (9)

u(0) = u0, (10)

where the state function u(·) takes values in a separable Hilbert space H, A is a linear operator

on H, f : H → H is a nonlinear function.

Nonlocal differential equations like (9) naturally appear in a number of contexts, particularly

in the heat transfer processes in memory materials (see Clément (1981), Prüss (2012)) and in the

homogenization of an one-phase flow model in a fissured porous medium (see Amaziane (2007),

Hornung (1990)). In the case k0 = 0 and k = g1−α, α ∈ (0, 1), equation (9) is the subdiffusion

equation(6). In the case k0 > 0 and k = g1/2, equation (9) becomes the nonlinear Basset equation

(see Ashyralyev (2011)).

The Basset equation was proposed in the 1910s by British mathematician A.B. Basset as he
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studied particle motion in an uncompressed viscous liquid under the action of gravity. McKee

(1983) used the numerical method to find the approximate solution of the Basset type equation.

The well-posedness of the of linear Basset equation has been established recently in Ashyralyev

(2011), Bazhlekova (2014) and Hornung (1990). As far as we know, so far the qualitative results

for (9) are less known. In this thesis, our aim is to find the appropriate conditions for k and f

to prove the existence of solutions and finite time attractivity for solutions of (9)-(10) in case

k0 > 0.

Using the approach developed in Ke (2020), we derive the concept of mild solutions for

inhomogeneous problems and prove a new Gronwall type inequality for (9)-(10). Using the

contraction mapping principle and local estimates of solutions, we establish the global solv-

ability and the finite-time attractivity. Consequence of attractivity, we prove the existence of

periodic/anti-periodic solution of (9), i.e., the solutions satisfying u(0) = ±u(T ).

The second NDE class related to the Rayleigh-Stokes equation has the following form

∂tu−∆u− ∂t(m ∗∆u) = f(t, u) in Ω, t > 0, (11)

Bu = 0 on ∂Ω, t ≥ 0, (12)

u(·, 0) = ξ in Ω, , (13)

where ∂t = ∂
∂t

, m ∈ L1
loc(R+) is a nonnegative function, f is a nonlinear function and ξ ∈ L2(Ω)

is given, B is a boundary operator in one of the following forms

Bu = u or Bu = ν · ∇u+ ηu, η > 0,

with ν being the outward normal vector to ∂Ω.

We first mention some special cases of (11). If m is a nonnegative constant then (11) is the

classical reaction-diffusion equation with nonlinear sources. In the case m(t) = m0g1−α(t) =
m0t

−α

Γ(1− α)
,m0 > 0, α ∈ (0, 1), our equation reads

∂tu− (1 +m0∂
α
t )∆u = f(t, u),

which is the generalized Rayleigh-Stokes equation (see Bazhlekova (2015)), here ∂αt denotes the

fractional derivative of order α in the sense of Riemann-Liouville. In addition, if m is a regular

function, e.g. m ∈ C1(R+), then (11) is a diffusion equation with memory, namely

∂tu− (1 +m(0))∆u−
∫ t

0

m′(t− s)∆u(s)ds = f(t, u),

which has been a topic of an extensive study, see e.g., Cannarsa (2013), Conti (2014), Miller

(1978).

The generalized Rayleigh-Stokes equation is used to describe behavior of non-Newtonian flu-

ids in materials possessing both elasticity and viscosity. Accordingly, the generalized Rayleigh-

Stokes equation is employed to study practical applications in industry and engineering (see

Bazhlekova (2015)). As a matter of fact, there have been lots of works devoted to finding nu-

merical methods for solving Rayleigh-Stokes problem, see e.g., Bazhlekova (2015), Chen (2013).
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Recently, the final value problem for the generalized Rayleigh-Stokes equation is discussed in

the works of Luc (2019) and Tuan (2019). In this thesis, we study the solvability and stability

for problem (11)-(13) in the case the kernel function m being possibly singular (for example, m

is unbounded in the neighborhood of t = 0).

To this end, we assume that m ∈ L1
loc(R+) such that aγ(t) := 1+γm(t) is completely positive

for any γ > 0. Based on this assumption, we contruct a representation of mild solutions and

prove a new Gronwall type inequality for (11)-(13). Using this and local estimates of solutions,

we obtain the global solvability and stability results. In addition, when the uniqueness is not

guaranteed, we prove that there exists a compact set of decay solutions for (11) - (13), by

applying the fixed point theorem for condensing maps.

2. Purpose, objects and scope of the thesis

2.1. Purpose: The thesis focus on studying some qualitative properties for some classes

of NDEs, including: the finite-time attractivity, the stability of solutions; the solvability, the

uniqueness and Lipschitz stability for the problem of identifying parameter.

2.2. Objects: In the thesis, we consider some following types of NDEs

? The first type: Subdiffusion equations.

? The second one: Basset type equations.

? The third one: Rayleigh-Stokes type equations.

? The fourth one: Fractional differential variational inequalities.

2.3. Scope: The scope of the thesis is defined by the following contents

? Content 1: Study the finite-time attractivity of solutions for two classes of NDEs: Subdiffu-

sion equations and Basset type equations;

? Content 2: Study the asymptotic stability of solutions for semilinear Rayleigh-Stokes type

evolutionary equations;

? Content 3: Study the solvability, the uniqueness and the stability for the problem of identi-

fying parameter in a class of fractional differential variational inequalities.

3. Research Methods

In this thesis, we employ theory of operator, theory of stability and fixed point arguments.

In addition, for concrete content, we use suitable techniques.

• To prove the existence of solutions, decay solutions we make use of MNCs estimates and

fixed point theory for condensing maps.

• To prove the finite-time attractivity, we use Gronwall type inequalities and prior estimates

techniques.
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• To prove the asymptotic stability of solutions, we use Gronwall type inequalities and prior

estimates techniques.

• To study the solvability, the uniqueness and stability for the problem of identifying param-

eter in a class of fractional differential variational inequalities, the regularity for fractional

diffusion equations and fixed point techniques are employed.

4. Results of thesis

The thesis achieved the following main results:

1. Proving the existence of integral solutions and the finite-time attractivity of the zero solution

as well as the nonzero solutions for two classes of semilinear NDEs: subdiffusion equations

and Basset type equations, where the nonlinear term has superlinear growth.

2. Proving the existence and the asymptotic stability of solutions for a class of semilinear

Rayleigh-Stokes type evolutionary equations. Especially, in the case of nonuniqueness, we

prove that there exists a nonempty compact set of decay solutions.

3. Proving the solvability, the uniqueness and stability for the problem of identifying parameter

in a class of fractional differential variational inequalities.

6. Structures of thesis

Together with the Introduction, Conclusion, Authors works related to the thesis that have been

published and References, the thesis includes four chapters: Chapter 1 is devoted to present some

preliminaries. In Chapter 2, we present the finite-time attractivity for two classes of nonlocal

differential equation: subdiffusion equation and Basset type equation. Chapter 3 is devoted to

studying the asymptotic stability and the existence of decay solutions for a class of semilinear

Rayleigh-Stokes type equations. Chapter 4 presents problem of identifying parameter in a class

of fractional differential variational inequalities.
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Chapter 1

PRELIMINARIES

In this chapter, we present some preliminaries including: some results about fractional caculus;

resolvent theory; measure of noncompactness; fixed point principles; scalar Volterra equations

with completely positive kernels.

1.1. FUNCTIONAL SPACES

In this section, we recall some important functional spaces which are used in next chapters.

1.2. Fractional calculus

In this section, we recall some concept and properties related to fractional derivatives and frac-

tional integral.

1.3. Laplace transform

In this section we recall the definition and some basic properties of the Laplace transform, the

inverse Laplace transform.

1.4. Measure of noncompactness (MNC) and MNS estimates

In this section, we present concept of MNC and some estimates related to Hausdorff MNC.

1.5. Condensing map and some fixed point theorems

In this section, we recall some fixed point principles for condensing map.

1.6. Semigroup theory

This section is devoted to present some definitions and results in theory of semigroup.

1.7. The Cauchy problem for fractional differential equations

This section gives a representation of integral solution to the Cauchy problem for the subdiffusion

equations.

1.8. Volterra integral equations

In this section, we recall some of the results for the solutions of the Volterra integral equations

with completely positive kernels.
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Chapter 2

FINITE-TIME ATTRACTIVITY FOR SOME CLASSES OF

SEMILINEAR NONLOCAL EVOLUTION EQUATIONS

We prove the existence and finite-time attractivity of solutions to two classes of semilinear

nonlocal evolution equations: subdiffusion equations and Basset type equations. Our analysis is

based on the resolvent theory, the fixed point theory for condensing maps and the local estimates

of solutions.

The content of this chapter is written based on the papers [1] and [2] in the author’s works

related to the thesis that has been published.

2.1. Finite-time attractivity for semilinear subdiffusion equations

In this section, we study the solvability and the finite-time attractivity of solutions for semi-

linear subdiffusion equations.

2.1.1. Problem setting

Let (X, ‖ · ‖) be a Banach space and α ∈ (0, 1). Consider the following problem

d

dt

(
g1−α ∗ [u− u(0)]

)
(t) = Au(t) + f

(
u(t)

)
, t ∈ [0, T ], (2.1)

where g1−α(t) = t−α/Γ(1−α), α ∈ (0, 1), t > 0, the state u(·) takes values in a Banach space X,

A is a closed linear operator on X which generates a strongly continuous semigroup, f : X → X

is a nonlinear function.

2.1.2. Existence results

To study the solvability of equation (2.1), we assume

(HA) The C0-semigroup {S(t)}t≥0 generated by A is norm-continuous and globally bounded, i.e.

there is M ≥ 1 such that

‖S(t)u‖ ≤M‖u‖,∀t ≥ 0,∀u ∈ X.

(HF) The nonlinear function f : X → X is continuous and satisfies:

(1) the growth condition

‖f(u)‖ ≤ Ψ(‖u‖),∀u ∈ X,

where Ψ : R+ → R+ is a continuous and nondecreasing function;

(2) if S(·) is non-compact then for any bounded set Ω ⊂ X, we have

χ
(
f(Ω)

)
≤ k χ(Ω), k ∈ R+.
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Given ξ ∈ X, we define the solution operator Σ : C([0, T ];X)→ C([0, T ];X) as follows

Σ(u)(t) = Sα(t)ξ +

∫ t

0

(t− s)α−1Pα(t− s)f(u(s)) ds.

It is easy to verify that y is an integral solution of (2.1) iff it is a fixed point of the solution

operator Σ. The next lemma will be used to show the condensivity of Σ.

Lemma 2.1. Let the hypotheses (HA) and (HF) hold. Then

χ∗(Σ(Ω)) ≤
(

sup
t∈[0,T ]

4k

∫ t

0

(t− s)α−1‖Pα(t− s)‖χds
)
χ∗(Ω).

The following theorem states the result of solvability for our problem. (2.1).

Theorem 2.1. Let the hypotheses (HA) and (HF) hold. If there exists R > 0 such that

Γ(α + 1)R

Γ(α + 1)‖ξ‖+ TαΨ(R)
≥M, (2.2)

then the solution set to (3) is nonempty and compact.

2.1.3. Finite-time attractivity

In this section, we prove some results on finite-time attractivity of solutions to (2.1). By S(ξ),

we denote the solution set of (2.1) with respect to the initial datum ξ. We adopt the following

concept of finite-time attractivity of solutions to (2.1).

Definition 2.1 (Finite-time attractivity). Let y ∈ C([0, T ];X) be a solution of (2.1). Then y

is exponentially attractive on [0, T ], provided that

(i) y is called attractive on [0, T ] if there exists an η > 0 such that

‖u(T, ξ)− y(T, y(0))‖ < ‖ξ − y(0)‖,

for all ξ ∈ Bη(y(0))\{y(0)} and u ∈ S(ξ).

(ii) y is called exponentially attractive on [0, T ] if

lim sup
η↘0

1

η
sup

ξ∈Bη(y(0))

sup
u∈S(ξ)

‖u(T, ξ)− y(T, y(0))‖ < 1.

One can easily verify from the definition that exponential attractivity implies attractivity.

The following lemma gives a sufficient condition for exponential attractivity.

Lemma 2.2. Let y ∈ C([0, T ];X) be a solution of (2.1). Then y is exponentially attractive on

[0, T ], provided that

lim sup
‖ξ‖→0

sup
u∈S(y(0)+ξ)

‖u(T, y(0) + ξ)− y(T, y(0))‖
‖ξ‖

< 1. (2.3)

In order to analyze the finite-time attractivity of solutions of (3), we replace the hypotheses

(HA) and (HF) by the following ones.
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(A*) The semigroup S(·) generated by A is norm-continuous and there exist M ≥ 1, β > 0 such

that

‖S(t)u‖ ≤Me−βt‖u‖, ∀t ≥ 0,∀u ∈ X.

(F*) The function f satisfies (HF) with Ψ being locally Lipschitz and Ψ(0) = 0. Furthermore,

‖f(v)‖ = γ‖v‖+ o(‖v‖) as ‖v‖ → 0, for some γ < β
M

.

Lemma 2.3. Let (A*) and (F*) hold. Then

lim sup
‖ξ‖→0

sup
u∈S(ξ)

‖u(t)‖ = 0, ∀t ∈ (0, T ].

Theorem 2.2. Let (A*) and (F*) hold. Then the zero solution of (2.1) is exponentially attrac-

tive on [0, T ] provided that

Eα,1(−(β − γM)Tα) <
1

M
. (2.4)

As a consequence, we are able to prove a linearized attractivity result for (2.1).

Corollary 2.1. Let (HA) hold. Assume f ∈ C1(X) such that

(1) f(0) = 0;

(2) f obeys (F) with Ψ being locally Lipschitz;

(3) A0 = A+Df(0) is the generator of an exponentially stable semigroup {S0(t)}t≥0, that is

‖S0(t)‖op ≤ e−βt, ∀t ≥ 0,

for some β > 0.

Then the zero solution to (2.1) is attractive on [0, T ].

In order to prove the attractivity of nonzero solutions, we replace (F*) by the following

hypothesis.

(F]) The function f satisfies (F)(2) and the following estimate

‖f(u)− f(v)‖ ≤ Ψ(‖u− v‖), ∀u, v ∈ X,

where Ψ ∈ C(R+;R+) is a nondecreasing and locally Lipschitz function satisfying Ψ(r) = γr +

o(r) as r → 0, γ < β
M
.

Theorem 2.3. Let (A*) and (F]) hold. If condition (2.4) is testified then every solution to (3)

is exponentially attractive on [0, T ].

2.1.4. Application

Let Ω ⊂ RN be a bounded domain with smooth boundary ∂Ω. Consider the following frac-

tional partial differential equation

∂αt u(x, t) = ∆xu(x, t) + f̃(u(x, t)), α ∈ (0, 1), t ∈ [0, T ], (2.5)
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u = 0 on ∂Ω, (2.6)

u(x, 0) = ξ(x), x ∈ Ω. (2.7)

In the above model, ∂αt stands for the Caputo fractional derivative of order α with respect to

t, ∆x denotes the Laplace operator with respect to x, and f̃ : R→ R is a continuous function.

Let X = C0(Ω) = {v ∈ C(Ω) : v = 0 on ∂Ω}, endowed with the norm ‖v‖ = sup
x∈Ω

|v(x)|. Put

A = ∆ with the domain D(A) = {v ∈ C0(Ω) ∩H1
0 (Ω) : ∆v ∈ C0(Ω)}, and define f : C0(Ω) →

C0(Ω) as follows

f(v)(x) = f̃(v(x)), ∀v ∈ C0(Ω).

Then (2.5)-(2.7) is in the fashion of (2.1). It is known that A generates a contraction C0-

semigroup {S(t)}t≥0, compact on X. Hence, (A) is fulfilled.

It should be noted that, S(·) satisfies

‖S(t)‖op ≤Me−λ1t, M = exp

(
λ1|Ω|2/N

4π

)
,

where λ1 is the first eigenvalue of (−∆) in H1
0 (Ω), that is

λ1 = sup

{∫
Ω
|∇u|2dx∫
Ω
u2dx

: u ∈ H1
0 (Ω), u 6= 0

}
,

and |Ω| is the volume of Ω. Therefore (A*) is satisfied.

We first consider the case f̃ is superlinear, that is

|f̃(z)| ≤ k |z|p,∀z ∈ R, for some k > 0, p > 1.

Then f(0) = 0 and ‖f(v)‖ ≤ k‖v‖p for all v ∈ C0(Ω). It is easily seen that f satisfies (F*)

with γ = 0. Due to Theorem 2.2, the zero solution of (2.5) is exponentially attractive on [0, T ]

provided that

exp

(
λ1|Ω|2/N

4π

)
Eα,1(−λ1T

α) < 1.

In fact, the last condition is imposed on T , which requires that T > T ∗ with a T ∗ = T ∗(Ω, N) > 0.

We are now going to relax this requirement by assuming that f̃ ∈ C2(R) such that f̃ ′(0) < 0.

Since f̃ is twice differentiable, one has f ∈ C1(C0(Ω)). Noting that Df(0) = f̃ ′(0)I, the

semigroup S0(·) generated by A0 = A+Df(0) is given by

S0(t) = ef̃
′(0)tS(t), t ≥ 0,

and we have

‖S0(t)‖op ≤ ef̃
′(0)t, t ≥ 0,

due to the fact that S(·) is a contraction semigroup. Now employing Corollary 2.1, we can state

that the zero solution of (2.5) is exponentially attractive on [0, T ] for any T > 0.

2.2. Finite-time attractivity for semilinear Basset type evolutionary equations

In this section, we study the solvability and the finite-time attractivity of solutions for semi-

linear Basset type evolution equations.
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2.2.1. Problem setting

Let H be a separable Hilbert space and T > 0. Consider the following problem

d

dt

(
k0u+ k ∗ [u− u(0)]

)
(t) + Au(t) = f

(
u(t)

)
, t ∈ (0, T ] (2.8)

u(0) = u0, (2.9)

where the state function u(·) takes values in H, k0 > 0, k ∈ L1
loc(R+), A is a linear operator on

H, f : H → H is a nonlinear function.

In order to examine (2.8)-(2.9), we make the following standing assumptions.

(Hk) k0 > 0 and the kernel k ∈ L1
loc(R+) is a nonnegative and nonincreasing function.

(Ha) A : D(A) → H is densely defined, self-adjoint and positively definite operator with a

compact resolvent.

2.2.2. Formula of solution for the linear problem

Assumption that (Hk) hold. Consider the linear problem

d

dt

(
k0u+ k ∗ [u− u0]

)
(t) + Au(t) = f(t), t ∈ (0, T ] (2.10)

u(0) = u0, (2.11)

where f ∈ C([0, T ], H). Denote ` is the unique solution of the integral equation

k0`+ k ∗ ` = 1 on R+. (2.12)

By the assumption (Ha), there exists a nondecreasing sequence {λn}∞n=1,

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · , λn → +∞ khi n→ +∞,

and a system of vectors {en}∞n=1 ⊂ D(A) such that {en}∞n=1 which forms an orthonormal basis

of H and Aen = λnen, for alln ∈ N. We note that equation (2.10) is equivalent to the Volterra

equation

u+ ` ∗ Au = u0 + ` ∗ f.

Let u(t) =
∑∞

n=1 un(t)en, u0 =
∑∞

n=1 u0,nen, f(t) =
∑∞

n=1 fn(t)en. Therefore, we find that

un(t) = sλn(t)u0,n + (rλn ∗ f)(t), where sλn , rλn , n = 1, 2, . . . are unique solutions of the following

Volterra integral equations

sµ(t) + λn
(
` ∗ sµ

)
(t) = 1, t ≥ 0, (2.13)

and

rµ(t) + λn
(
` ∗ rµ

)
(t) = `(t), t ≥ 0. (2.14)

So u(t) = S(t)u0 +
∫ t

0
R(t− s)f(s)ds, where {S(t)}t≥0 and {R(t)}t>0 defined by

S(t)z =
∞∑
n=1

sλn(t)znen, t ≥ 0, R(t)z =
∞∑
n=1

rλn(t)znen, t > 0, z ∈ H, and∫ t

0

R(t− s)f(s)ds =
∞∑
n=1

(
rλn ∗ fn

)
(t)en.
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2.2.3. Existence results

Definition 2.2. A function u ∈ C([0, T ];H) is called a mild solution of problem (2.8)-(2.9) on

the interval [0, T ] iff

u(t) = S(t)u0 +

∫ t

0

R(t− s)f
(
u(s)

)
ds, for all t ∈ [0, T ].

As far as the nonlinearity f is concerned, we assume that

(Hf) The nonlinear function f : H → H is locally Lipschitz, that is

‖f(u1)− f(u2)‖ ≤ L(r)‖u1 − u2‖,∀u1, u2 ∈ Br,

where Br is the closed ball centered at origin with radius r in C([0, T ];H) and lim sup
r→0

L(r) < λ1.

We analyze the first case for global solvability in the following theorem.

Theorem 2.4. Let the hypotheses (Hk), (Ha) and (Hf) hold. If f(0) = 0, then there exist

r > 0 and δ > 0 such that the problem (2.8)-(2.9) admits a unique global mild solution u ∈ Br

provided that ‖u0‖ ≤ δ.

In the special case the nonlinear function f is globally Lipschitz, we also obtain the global

solvability of the problem (2.8)-(2.9) without any restriction on the initial data.

Theorem 2.5. Let the hypotheses (Hk), (Ha) and (Hf) hold with L(r) being a constant. Then

the problem (2.8)-(2.9) has a unique global mild solution.

2.2.4. Finite-time attractivity

This section presents our main result on finite-time attractivity of solutions to (2.8).

Theorem 2.6. Let the assumptions of Theorem 2.4 hold. Then there exists δ > 0 such that,

every solution u of (2.8) with ‖u(0)‖ ≤ δ is exponentially attractive on [0, T ].

In the case the nonlinear function f is globally Lipschitzian, we get the following result.

Theorem 2.7. If the assumptions of Theorem 2.5 hold, then every solution of (2.8) is exponen-

tially attractive on [0, T ], provided that L < λ1.

By the same conditions ensuring the attractivity, we prove the solvability result of the fol-

lowing problem

d

dt

(
k0u+ k ∗ [u− u(0)]

)
(t) + Au(t) = f

(
u(t)

)
, t ∈ (0, T ] (2.15)

u(0) = g(u), (2.16)

where g : C([0, T ];H)→ H satisfies the following assumption.

(Hg) There exists τ ∈ (0, T ] such that

‖g(u1)− g(u2)‖ ≤ sup
s∈[τ,T ]

‖u1(s)− u2(s)‖,∀u1, u2 ∈ C([0, T ];H).
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By mild solution to problem (2.15)-(2.16), we mean a function u ∈ C([0, T ];H) satisfying

u(t) = S(t)g(u) +

∫ t

0

R(t− s)f
(
u(s)

)
ds,∀t ∈ [0, T ].

We are now in a position to prove the solvability of problem (2.15)-(2.16).

Theorem 2.8. Let the hypotheses of Theorem 2.5 and (Hg) hold. Then the problem (2.15)-(2.16)

has a mild solution.

2.2.5. Application

Let α ∈ (0, 1). Consider the following nonlinear integrodifferential equation

∂tu(x, t) + ∂αt u(x, t) = ∂2
xu(x, t)

+ h
(∫ 1

0

u2(x, t)dx
)
u(x, t), x ∈ (0, 1), t ∈ (0, T ] (2.17)

u(0, t) = u(1, t) = 0, t ≥ 0, (2.18)

u(x, 0) = ξ(x), x ∈ [0, 1]. (2.19)

In the above model, ∂αt stands for the Caputo fractional derivative of order α, ∂x denotes the

generalized derivative in variable x. In this case the kernel k is given by k(t) = g1−α(t).

Let H = L2(0, 1). The inner product and the norm in H are given by

(u, v) =

∫ 1

0

u(x)v(x)dx, ||v|| =
(∫ 1

0

|v(x)|2dx
) 1

2
.

Let A = −∂2
x with the domain D(A) = H2(0, 1) ∩ H1

0 (0, 1). It is known that A is a densely

defined, self-adjoint and positive operator with domain D(A) and has a compact resolvent on

H. Moreover, the eigenvalues of A consists of λn = n2π2, n = 1, 2, . . ., with corresponding

eigenvectors en =
√

2 sin(nx), n ≥ 1, which form an orthonormal basis in H. So the hypothesis

(Ha) is verified.

Let f(v)(x) = h

(∫ 1

0
v2(x) dx

)
v(x), v ∈ L2(0, 1). Clearly, the problem (2.5)-(2.7) is a model

of (2.8)-(2.9) with k0 = 1. A simple computation shows that (−1)nk(n)(t) ≥ 0,∀n ∈ N, t > 0

and hence the kernel k is completely monotonic. Consequently, the hypothesis (Hk) is satisfied.

Regarding the nonlinearity in equation (2.5), we assume that the function h belongs to C1
(
R
)

and |h(r)| ≤ a+b|r|β, for some nonnegative constants a, b, β. One can check that f maps L2(0, 1)

into itself and for all v1, v2 ∈ L2(0, 1) such that ‖v1‖, ‖v2‖ ≤ r, the following holds

‖f(v1)− f(v2)‖ ≤
(
2r2 sup

z∈[0,r2]

|h′(z)|+ a+ br2β
)
‖v1 − v2‖.

Hence, the hypothesis (Hf) is fulfilled with L(r) = 2r2 supz∈[0,r2] |h′(z)| + a + br2β. Obviously,

lim
r→0

L(r) = a. Therefore, if a < π2, then every solution of (2.17)-(2.19) with ξ small enough is

attractive on [0, T ].
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Chapter 3

STABILITY FOR SEMILINEAR

RAYLEIGH-STOKES TYPE EVOLUTION EQUATIONS

In this chapter, we analyze the solvability, the stability and the existence of decay solutions

for semilinear Rayleigh-Stokes type evolution equations. Our analysis is based on the theory of

completely positive functions, local estimates and fixed point arguments.

The content of this chapter is written based on the paper [4] in the author’s works related to

the thesis that has been published.

3.1. Problem setting

Let Ω ⊂ Rd be a bounded domain with smooth boundary ∂Ω. Consider the following problem

∂tu−∆u− ∂t(m ∗∆u) = f(t, u) in Ω, t > 0, (3.1)

Bu = 0 on ∂Ω, t ≥ 0, (3.2)

u(·, 0) = ξ in Ω, (3.3)

where m ∈ L1
loc(R+) is a nonnegative function, f is a nonlinear function and ξ ∈ L2(Ω) is given,

B is a boundary operator in one of the following forms

Bu = u or Bu = ν · ∇u+ ηu, η > 0,

with ν being the outward normal vector to ∂Ω.

3.2. Formula of solution for the linear problem

In this section, we find a representation for solution of the linear problem

∂tu−∆u− ∂t(m ∗∆u) = F in Ω, t ∈ (0, T ], (3.4)

Bu = 0 on ∂Ω, t ∈ [0, T ], (3.5)

u(·, 0) = ξ in Ω, (3.6)

where F ∈ C([0, T ];L2(Ω)). Let {ϕn}∞n=1 be an orthonormal basis of L2(Ω) consisting of eigen-

functions of −∆ subject to the homogeneous boundary condition, i.e.,

−∆ϕn = λnϕn in Ω, Bϕn = 0 on ∂Ω,

where one can assume that 0 < λ1 ≤ λ2 ≤ ..., λn → ∞ as n → ∞. For β ∈ R, the fractional

power operator (−∆)β is defined as follows

(−∆)βv =
∞∑
n=1

λβn(v, en)en,

D((−∆)β) = {v ∈ L2(Ω) :
∞∑
n=1

λ2β
n (v, en)2 <∞},
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here the notation (·, ·) denotes the inner product in L2(Ω). We assume that m ∈ L1
loc(R+)

satisfies the standing assumption:

(M) The function m ∈ L1
loc(R+) is nonnegative such that the function aγ(t) := 1 + γm(t) is

completely positive for any γ > 0.

Using the Fourier series method, the solution of problem (3.4)-(3.6) has the following represen-

tation

u(·, t) = S(t)ξ +

∫ t

0

S(t− τ)F (·, τ)dτ, (3.7)

where S(t) is the resolvent operator defined by

S(t)ξ =
∞∑
n=1

ω(t, λn)ξnϕn, ξ ∈ L2(Ω), (3.8)

here ω(t, λn), n = 1, 2, . . . be the solution of the following problem

ω′(t) + λnω(t) + λn(m ∗ ω)′(t) = 0 for t > 0, ω(0) = 1. (3.9)

3.3. Solvability and stability

Based on representation (3.7), we give the following definition of mild solution for (3.1)-(3.3).

Definition 3.1. A function u ∈ C([0, T ];L2(Ω)) is said to be a mild solution to the problem

(3.1)-(3.3) on [0, T ] iff

u(·, t) = S(t)ξ +

∫ t

0

S(t− τ)f(τ, u(·, τ))dτ for any t ∈ [0, T ].

We now prove a global solvability result for (3.1)-(3.3).

Theorem 3.1. Let (M) hold. Assume that the nonlinearity function f : [0, T ]×L2(Ω)→ L2(Ω)

satisfies

(F1) f is continuous such that f(·, 0) = 0 and ‖f(t, v1) − f(t, v2)‖ ≤ κ(r)‖v1 − v2‖ for all

v1, v2 ∈ Br, t ∈ [0, T ], where Br is the closed ball in L2(Ω) centered at origin with radius r,

κ(·) is a nonnegative function such that lim sup
r→0

κ(r) = ` ∈ [0, λ1).

Then there exists δ > 0 such that the problem (3.1)-(3.3) has a unique mild solution on [0, T ],

provided ‖ξ‖ ≤ δ.

In the next theorem, we will show that if the nonlinear function f has a sublinear growth,

the smallness condition on initial data can be relaxed.

Theorem 3.2. Let (M) hold with m being nonincreasing. Assume that f satisfies the condition

(F2) f is continuous such that ‖f(t, v)‖ ≤ p(t)‖v‖+q(t), for all v ∈ L2(Ω), where p, q ∈ L1(0, T )

are nonnegative functions.
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Then the problem (3.1)-(3.3) has at least one mild solution on [0, T ].

We are in a position to formulate some results on stability for our system.

Theorem 3.3. Let the assumption of Theorem 3.2 hold for any T > 0 with p ∈ L∞(R+) and

q ∈ L1
loc(R+) such that ‖p‖∞ < λ1 and ω ∗ q is a bounded function. Then there exists an

absorbing set for solution of (3.1)-(3.3) with arbitrary initial data. Moreover, if q = 0, then the

zero solution of (3.1) is asymptotically stable.

Theorem 3.4. Let the hypotheses of Theorem 3.1 hold for any T > 0. Then the zero solution

of (3.1) is asymptotically stable.

Considering the case when f is globally Lipschitzian, we have a stronger result.

Theorem 3.5. Let (M) hold. If f satisfies the Lipschitz condition as follows

‖f(t, v1)− f(t, v2)‖ ≤ κ0‖v1 − v2‖, fort ∈ R+, v1, v2 ∈ L2(Ω),

where κ0 ∈ [0, λ1), then every mild solution of (3.1)-(3.2) is asymptotically stable.

3.4. Existence of decay solutions

In this section, we consider the problem (3.1)-(3.3) under the assumption that, the nonlinearity

is non-Lipschitzian and possibly superlinear. More precisely,

(F3) f : R+ × L2(Ω))→ L2(Ω) is a continuous mapping such that

‖f(t, v)‖ ≤ p(t)G(‖v‖), ∀t ∈ R+, v ∈ L2(Ω),

where p ∈ L1
loc(R+) is a nonnegative function and G ∈ C(R+) is a nonnegative and nonde-

creasing function such that

lim sup
r→0

G(r)

r
· sup
t≥0

∫ t

0

ω(t− τ, λ1)p(τ)dτ < 1, (3.10)

and

lim
T→∞

sup
t≥T

∫ t
2

0

ω(t− τ, λ1)p(τ)dτ = 0. (3.11)

The following theorem gives the main result of this section.

Theorem 3.6. Let (M) and (F3) hold. Then there exists δ > 0 such that, the problem (3.1)-(3.3)

has a compact set of decay solutions, provided ‖ξ‖ ≤ δ.
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Chapter 4

IDENTIFYING PARAMETER IN A CLASS OF FRACTIONAL

DIFFERENTIAL VARIATIONAL INEQUALITIES

In this chapter, we study the solvability and the stability for the problem of identifying pa-

rameter in a class of fractional differential variational inequalities. Our approach is based on a

regularity analysis for fractional diffusion equations and fixed point techniques.

The content of this chapter is written based on the paper [3] in the author’s works related to

the thesis that has been published.

4.1. Problem setting

Let X be a Banach space and U a Hilbert space. Given closed convex set K ⊂ U , we consider

the identification problem: (FrIP) For ξ, ψ ∈ X, find (x, u, z) satisfying the fractional differential

variational inequality

Dα
0 x(t) = Ax(t) +B(u(t))z + h(x(t)), t ∈ (0, T ], (4.1)

〈F (x(t)) +G(u(t)), v − u(t)〉 ≥ 0, ∀v ∈ K, t ∈ [0, T ], (4.2)

x(0) = ξ, (4.3)

and the condition ∫ T

0

ϕ(s)x(s)ds = ψ, (4.4)

where (x, u) takes values in X × U , z ∈ X; Dα
0 , α ∈ (0, 1), is the fractional derivative in the

Caputo sense. In this model, A is a closed linear operator onX, ϕ ∈ C1([0, T ];R) is a nonnegative

nontrivial function, B : U → R, h : X → X, F : X → U∗ and G : U → U∗ are given maps. The

notation 〈·, ·〉 stands for the canonical pairing between U and its dual U∗.
Our purpose of this chapter is to find appropriate conditions on A,B, F,G, h, ξ, ψ, ϕ, which

ensure solvability, uniqueness and Lipschitz stability for the problem (FrIP) (4.1)-(4.4).

4.2. Solvability

In order to deal with the problem (FrIP) (4.1)-(4.4), we make use of the following assumptions:

(A) The operator A is sectorial and generates a compact semigroup such that

‖S(t)v‖ ≤ e−βt‖v‖, ∀t ≥ 0, v ∈ X,

where β is a positive number.

(B) The function B : U → R is Lipschitzian, that is, there exists a positive constant LB > 0

such that

‖B(u1)−B(u2)‖ ≤ LB‖u1 − u2‖U , ∀u1, u2 ∈ U .

Moreover, there exist mB,MB > 0 such that mB ≤ B(v) ≤MB for all v ∈ K.
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(F) The operator F : X → U∗ is Lipschitz continuous with constant LF , that is

‖F (y1)− F (y2)‖U∗ ≤ LF‖y1 − y2‖, ∀y1, y2 ∈ X.

(G) The operator G : U → U∗ is defined by

〈G(u), v〉 = b(u, v),∀u, v ∈ U ,

where b : U × U → R is a bilinear continuous function on U × U such that

b(u, u) ≥ ηG‖u‖2
U ,∀u ∈ U ,

here ηG is a positive number.

(H) The function h : X → X is a Lipschitz function with constant Lh, that is

‖h(y1)− h(y2)‖ ≤ Lh‖y1 − y2‖, ∀y1, y2 ∈ X.

Put

Uad = {u ∈ C([0, T ];U) : u(t) ∈ K,∀t ∈ [0, T ]}.

Definition 4.1. For given ξ, z ∈ X, a pair (x, u) ∈ C([0, T ];X) × Uad is called a classical

(integral) solution of the problem (4.1)-(4.3) if (x, u) satisfies (4.2) and x is a classical (integral)

solution of the problem

Dα
0 x(t) = Ax(t) + f(t), t ∈ (0, T ],

x(0) = ξ,

with f(t) = B(u(t))z + h(x(t)).

Definition 4.2. For given ξ, ψ ∈ X, a triple (x, u, z) ∈ C([0, T ];X) × Uad × X is said to be a

solution of the problem (FrIP) if (x, u) is a classical solution of the problem (4.1)-(4.3) and x

fulfills (4.4).

We are in a position to state the main result of this section.

Theorem 4.1. Let (A), (B), (F), (G), (H), and (4.5) hold. Assume that ξ ∈ D(A). Then the

problem (FrIP) has a solution, provided that

MB(Lϕ + Lh‖ϕ‖L1)

mB‖ϕ‖L1

+ Lh < β, (4.5)

where Lϕ =
T 1−α

Γ(2− α)
(|ϕ(T )|+ T supt∈[0,T ] |ϕ′(t)|).

4.3. Uniqueness and Stability

In this section, we consider the correspondence (ξ, ψ) 7→ (x, u, z), where (x, u, z) is the solution

of (FrIP) with respect to (ξ, ψ).
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Lemma 4.1. Assume that the hypotheses (A), (B), (F), (G), (H), and (4.5) hold. Let (x, u, z)

be a solution of (FrIP) with respect to the pair (ξ, ψ). Then there exists ρ0 = ρ0(ξ, ψ) > 0 such

that ‖x‖∞ ≤ ρ0. In addition, if (x̂, û, ẑ) is another solution of (FrIP) with respect to (ξ̂, ψ̂), then

one can find positive numbers δ and ρ = ρ(ξ, ψ, ξ̂, ψ̂) such that

‖x− x̂‖∞ ≤ ρ
(
‖ξ − ξ̂‖+ ‖ψ − ψ̂‖D(A)

)
,

provided that LF < δ.

The uniqueness and stability of solution to (FrIP) are given in the following theorem.

Theorem 4.2. Assume that the hypotheses (A), (B), (F), (G), (H), and (4.5) hold. Then the

solution of the problem (FrIP) is unique for each pair (ξ, ψ). Moreover, there exists δ > 0 such

that the solution map (ξ, ψ)→ (x, u, z) is locally Lipschitz continuous as a map from X ×D(A)

to C([0, T ];X)× C([0, T ];U)×X, provided that LF < δ.

4.4. Application

Let Ω be a bounded domain in Rd, d ≥ 1, with smooth boundary ∂Ω. Assume that % ∈ H2(Ω)

is a nonnegative function. Let

K := {v ∈ L2(Ω) : v(x) ≥ %(x) for a.e. x ∈ Ω}.

We consider the following problem: find z ∈ L2(Ω) and Y, u ∈ C([0, T ];L2(Ω)) satisfying

∂αt Y (t, x) = ∆xY (t, x) + z(x)

∫
Ω

Q(y, u(t, y))dy + h̃(x, Y (t, x)), x ∈ Ω, (4.6)

−∆xu(t, x) +W (u(t, x)− %(x)) 3 f(x, Y (t, x)), x ∈ Ω, (4.7)

Y (t, x) = u(t, x) = 0, x ∈ ∂Ω, (4.8)

Y (0, x) = ξ(x), x ∈ Ω, (4.9)

and the measurement condition

1

T

∫ T

0

Y (t, x) dt = ψ(x), x ∈ Ω, (4.10)

where ∂αt stands for the Caputo derivative of order α ∈ (0, 1) in the time variable, W : R→ 2R

is a maximal monotone graph,

W (r) =


0 if r > 0,

R− if r = 0,

∅ if r < 0.

The function ϕ is nonnegative and differentiable on [0, T ], ξ, ψ ∈ H2(Ω) ∩H1
0 (Ω), the functions

Q, h̃ and f will be described later.

Let X = U = L2(Ω). The norm in X and U is given by

‖u‖2 =

∫
Ω

|u(x)|2 dx.
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Define the function

B : U → R,

B(v) =

∫
Ω

Q(y, v(y))dy. (4.11)

Then (4.6) can be represented as

∂αt Y (t) = AY (t) +B(u(t))z + h(Y (t)), t ∈ [0, 1],

where A = ∆, D(A) = H1
0 (Ω)∩H2(Ω), Y (t) ∈ X, u(t) ∈ U such that Y (t)(x) = Y (t, x), u(t)(x) =

u(t, x), and h : X → X such that

h(v)(x) = h̃(x, v(x)), x ∈ Ω. (4.12)

It is known that A is the infinitesimal generator of a compact, analytic semigroup {S(t)}t≥0

on X. Furthermore, we have

‖S(t)‖op ≤ e−λ1t, ∀t ≥ 0,

where λ1 is given by

λ1 = sup
‖u‖=1

‖∇u‖ > 0.

We now consider (4.7). Put G = −∆, where −∆ denotes the distributional Laplace operator,

namely,

〈−∆u, v〉 :=

∫
Ω

∇u(x)∇v(x)dx, for all u, v ∈ H1
0 (Ω).

Thus 〈Gu, u〉 = ‖u‖2
H1

0 (Ω)
≥ λ1‖u‖2. So the assumption (G) is fulfilled with ηG = λ1.

Let F : X → X be the map defined by

F (v)(x) = f(x, v(x)), x ∈ Ω. (4.13)

Noting that, inclusion (4.7) can be written as

−∆u(t) + ∂IK(u(t)) 3 F (Z(t)),

where

∂IK(u) = {v ∈ L2(Ω) :

∫
Ω

v(x)(u(x)− z(x)) dx ≥ 0,∀z ∈ K}

= {v ∈ L2(Ω) : v(x) ∈ W (u(x)− %(x)), for a.e. x ∈ Ω}.

Regarding the nonlinear functions appearing in (4.6)-(4.7), we assume that Q, h̃ and f are

Carathéodory functions defined on Ω× R such that:

(N1) The function Q(x, ·) is nondecreasing and

Q(x, r) ≤ p(x), ∀(x, r) ∈ Ω× R,

where p ∈ L1(Ω) is a nonnegative function;

(N2) |Q(x, r)−Q(x, s)| ≤ q(x)|r − s|,
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(N3) |h̃(x, r)− h̃(x, s)| ≤ k(x)|r − s|,

(N4) |f(x, r)− f(x, s)| ≤ `(x)|r − s|,

for all x ∈ Ω and r, s ∈ R, here q, k, ` ∈ L2(Ω) are given functions. Then it follows from

(N1)-(N2) that the function B given by (4.11) obeys the following estimates

B(v) ≤MB :=

∫
Ω

p(x)dx, ∀v ∈ X

B(v) ≥ mB :=

∫
Ω

Q(y, %(y))dy, ∀v ∈ K,

|B(v1)−B(v2)| ≤ LB‖v1 − v2‖, ∀v1, v2 ∈ X,

where LB = ‖q‖. Thus (B) is satisfied, provided that mB > 0.

It is easily seen that the function h defined by (4.12) is Lipschitzian, that is

‖h(v1)− h(v2)‖ ≤ Lh‖v1 − v2‖, ∀v1, v2 ∈ X,

where Lh = ‖k‖, thanks to (N3). Similarly, the function F defined by (4.13) is a Lipschitz

function with LF = ‖`‖ due to (N4). So (H) and (F) are fulfilled. According to Theorem 4.1

and 4.2, we can state the following result.

Theorem 4.3. Let the assumptions (N1)-(N4) hold. Then the problem (4.6)-(4.10) has a unique

solution and the map (ξ, ψ) 7→ (Y, u, z) is locally Lipschitzian as a map from X × D(A) to

C([0, T ];X)× C([0, T ];X)×X, provided that

MB(T−αΓ(2− α)−1 + ‖k‖) +mB‖k‖ < λ1mB,

and ‖`‖ is small enough.

Remark 4.1. It should be noted that, the system (4.6)-(4.9) is a generalized parabolic-elliptic

problem. If we choose K = L2(Ω), then it is easily seen that ∂IK(u) = {0}. So it follows from

(4.7) that

u(t, x) = V(Y )(t, x) = (−∆x)
−1f(x, Y (t, x)).

Using the last relation for (4.6), we get the equation of the form

∂αt Y = ∆Y +Q(Y )z + h(Y ),

and our question turns out to an identification problem for time-fractional diffusion equations.
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CONCLUSION

1. Results of the thesis

This thesis has studied some qualitative properties for some classes of NDEs, including: the

finite-time attractivity, the stability of solutions; the solvability, the uniqueness and Lipschitz

stability for the problem of identifying parameter. Our results:

(a) For semilinear subdiffusion equations and Basset type evolution equations considered in a

bounded time-interval, we obtained:

• The results of the solvability with the nonlinear part having linear growth; The finite-

time attractivity of zero solution and of nonzero solutions;

• Applications of our results to a semilinear subdiffusion equation and to a semilinear

integrodifferential equation.

(b) For a class of semilinear Rayleigh-Stokes type evolution equations, we obtained:

• The results of the solvability with the nonlinear part having linear growth;

• The asymptotic stability of the zero solution; The existence of decay solutions.

(c) For the problem of identifying parameter in a class of fractional differential variational

inequalities, we obtained:

• The solvability, the uniqueness and the Lipschitz stability;

• An application to a generalized parabolic-elliptic problem.

2. Recommendation

Beside the results obtained in this thesis, some open problems are:

• Study the stability and weak stability for nonlocal differential equations involving delays or

impulsive;

• Study the solvability, the stability for inverse problems governed by nonlocal differential

equations;

• Study the regularity and the convergence to equilibrium point of solutions for nonlocal

differential equations.
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