
INTRODUCTION

Research object

• Research on the 3-3-1β model, a flipped 3-3-1 model.

• The LFV source of the flipped 3-3-1 model.

• Investigate analytical formulas of one-loop contributions to the amplitude of the

decays h→ Zγ, γγ in the 3-3-1β, h→ eaeb, eb → eaγ in the flipped 3-3-1 model.

• Investigate the branching rate of the decays h→ µτ , h→ Zγ.

Research objects and scope of the study

• The coupling of LFV, the coupling related to the decay h→ Zγ, Feynman diagram

and amplitude corresponding to the proposed decay.

• Passarino-Veltman (PV) function corresponding to 2 of the decays h→ Zγ, eaeb.

• Numerical survey of the decays h→ Zγ and h→ µτ in 2 proposed models.

Research content

• The flipped 3-3-1 model and 3-3-1β model.

• The analytical formulas of the LFVHD in the flipped 3-3-1 model.

• Numerical survey and discuss on the decay h→ µτ in the flipped 3-3-1 model.

• Analytical formulas of the decays h→ Zγ, γγ in the 3-3-1β.

• Numerical survey and discuss of the decay h→ Zγ, γγ in the 3-3-1β.

Research methods

• Using Quantum Field Theory to build analytical formulas.

• Mathematica software for numerical calculation.

Structure of thesis:

Chapter 1: We present particle spectra, the physical states of the leptons and

bosons, the mixing parameters in the two models flipped 3-3-1 and 3-3-1β. This is the

basis for us to calculate the couplings and investigate the decay processes related to

this thesis.
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Chapter 2: In this chapter, we have calculated the couplings related to the LFVHD

in the flipped 3-3-1 model, constructed analytical formulas to calculate the branching

ratio (BR) of the decays h→ eaeb, ea → ebγ.

Chaper 3: We have investigated LFV decays of the SM-like Higgs boson h → µτ

and charged lepton ea → ebγ in the flipped 3-3-1 model. Assuming that all new heavy

particles are in the TeV scale, BR(h→ τµ, τe) and BR(h→ µe) can reach the orders

of O(10−3−10−4) and O(10−6), respectively. These values are very close to the recent

lower bounds reported by experiments, and they should be considered for constraining

the parameter space of the model if improved lower bounds on these decay rates are

announced. The large BR of LFVHD still appear even with heavy mZ′ ∼ O(10)

TeV. On the other hand, the BR(eb → eaγ) always satisfies the current experimental

constraints. Specifically, BR(τ → µγ, eγ) ≤ O(10−14), which are much smaller than

the planned sensitivities of upcoming experiments. In contrast, BR(µ→ eγ) can reach

the order of O(10−15), rather close to the planned experimental sensitivity of 6×10−14.

Chapter 4: In this chapter, we have determined the couplings of the decays h →
Zγ, γγ in the 3-3-1β. The analytical formulas for amplitudes, branching ratios, and

signal strengths were also shown.
Chapter 5: The signals of new physics predicted by the 3-3-1 models from the

neutral Higgs boson decays h, h03 → γγ, Zγ have been discussed. For the general
case with arbiltrary β we have derived that Br(h → γγ, Zγ) do not depend on the
β, they cannot be used to distinguish different models corresponding to particular β
values. The large deviations of the signal strengths δµZγ,γγ orginate from the one-
loop contribution of the H± and large |sδ|. In the region resulting in large δµZγ, the
recent constraint on the µγγ always gives more strict upper bound on µZγ than that
obtained from recent experiments. In particular, our numerical investigation predicts
|δµZγ| ≤ |δµγγ| < 0.23, which is the sensitivity of µZγ given in HL-LHC. On the other
hand, in a model with β =

√
3 and v3 ' 3 TeV, the allowed region |δµγγ| = 0.04

this model still allows |δµZγ| to be close to 0.1, but it cannot reach the near future
sensitivity |δµZγ| = 0.23. Theoretically, we have found two very interesting properties.
First, F 331

21,sv may have order of F 331
21,v in allowed regions of the parameter space, so

F 331
21,sv should not be ignored as previous assmuptions. Second, one-loop contributions

from gauge bosons can reach the order of charged Higgs contributions, leading to the
existence of regions having respective destructive and constructive contributions to
the decay amplitudes h → γγ and h → Zγ. This suggests that there may exist
recent gauge extensions of the SM that allow large |δµZγ| while still satisfy the future
experimental data including |δµγγ| ≤ 0.04.

Conclusions: Review the main obtained results and propose future research direc-
tions.

Appendix: We present some detailed intermediate steps related to the calculations

in the main part of this thesis.



Chapter 1

THE 3-3-1 MODEL REVIEW

1.1 Limitations of the Standard model (SM)

The standard model (SM) has been very successful in unifying the interactions,

fully describing the characteristics of masses and particle interactions, thereby making

accurate predictions that have been verified and validated by experiment. However,

SM still has limitations that we need to be overcome. Firstly, SM describes three types

of interactions: strong, electromagnetic and weak interactions, but it does not include

attractive interactions. Second, the SM describes neutrino as massless, in contrast

to the discovery of atmospheric neutrino conversion in the Super Kamiokande (1998)

experiment. This proves that there is a violation of the number of generational leptons

in the neutral lepton region, in which this quantity is completely conserved. Third,

although the Higgs boson has been observed by the LHC with a mass of about 125 GeV,

many of its interaction features have not been concretely determined experimentally

to be comparable to predictions by SM. Fourth, in SM, there is no theoretical basis or

condition that forces the generation number of fermions to be 3, ... Therefore, building

new models beyond the SM (BSM) is really necessary in order to solve problems that

cannot be explained by SM. These BSM may also contains many new physical signals

which can be tested by expereiments.

1.2 The 3-3-1 Flipped Models

The partical content is presented in Table 1.1. These Higgs bosons develop vacuum

expectation values (VEV) defined as:

σ0
i = ni +

1√
2

(Rσi + iIσi) , 〈σ0
i 〉 = ni, i = 1, 2, S,

H0
α = kα +

1√
2

(Rα + iIα) , 〈H0
α〉 = kα, α = 1, 2, 3, S,

∆0 = εS +
1√
2

(R∆ + iI∆) , 〈∆0〉 = εS , (1.1)
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Name 3-3-1 rep SM group decomposition Components # Flavors

Le
(
1,6,− 1

3

) (
1, 3̂, 0

)
+
(
1, 2̂,− 1

2

)
+
(
1, 1̂,−1

)  (Σ−)
c 1√

2
Σ0 1√

2
νe

1√
2
Σ0 Σ− 1√

2
e

1√
2
νe

1√
2
e Ee


L

1

Lα=µ,τ
(
1,3,− 2

3

) (
1, 2̂,− 1

2

)
+
(
1, 1̂,−1

)
(να, eα, Eα)

T
L 2

eαR (1,1,−1)
(
1, 1̂,−1

)
eαR 6

Qα
(
3,3, 13

) (
3, 2̂, 16

)
+
(
3, 1̂, 23

)
(dα,−uα, Uα)

T
L 3

uαR
(
3,1, 23

) (
3, 1̂, 23

)
uαR 6

dαR
(
3,1,− 1

3

) (
3, 1̂,− 1

3

)
dαR 3

φi=1,2

(
1,3, 13

) (
1, 2̂, 12

)
+
(
1, 1̂, 0

) (
H+
i , H

0
i , σ

0
i

)T
2

φ3
(
1,3,− 2

3

) (
1, 2̂,− 1

2

)
+
(
1, 1̂,−1

) (
H0

3 , H
−
3 , σ

−
3

)T
1

S
(
1,6, 23

) (
1, 3̂, 1

)
+
(
1, 2̂, 12

)
+
(
1, 1̂, 0

)  ∆++ 1√
2
∆+ 1√

2
H+
S

1√
2
∆+ ∆0 1√

2
H0
S

1√
2
H+
S

1√
2
H0
S σ0

S

 1

Table 1.1: Representations for the flipped 3-3-1 model, notations of fermions are Dirac spinors.

The covariant derivative of the SU(3)L × U(1)X group is defined as below:

Dµ ≡ ∂µ − igW a
µT

a − igXT 9XXµ, (1.2)

where T a (a = 1, 2, .., 8) are the SU(3) generators with respective gauge boson W a
µ ,

T 9 = I√
6

is the U(1)X generator with the gauge boson Xµ and X is the U(1)X charge

of the field acted by the covariant derivative. Specific cases:

• For a SU(3)L singlet: T a = 0 ∀a = 1, 2, .., 8; the U(1)X generator: T 9 = 1√
6
.

• For a SU(3)L triplet: T a = 1
2λa ∀a = 1, 2, .., 8, T 9 = 1√

6
I3, where λa are Gell-

Mann matrices. The covariant part can be written as:

Wµ ≡ W aT a =
1

2

W
3
µ + 1√

3
W 8
µ

√
2W ′+µ

√
2Y ′+µ√

2W−µ −W 3
µ + 1√

3
W 8
µ

√
2V ′0µ√

2Y −µ
√

2V ′0∗µ − 2√
3
W 8
µ

 ,

W ′±µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
, Y ′±µ =

1√
2

(
W 4
µ ∓ iW 5

µ

)
, V ′0µ =

1√
2

(
W 6
µ − iW 7

µ

)
.

• For a SU(3)L antitriplets: T a = −1
2λ
∗
a = −1

2λ
T
a ∀a = 1, 2, .., 8. T 9 = 1√

6
I3.

• For a SU(3)L sextet denoted as S ∼ (6, 2/3), given in table 1.1, action of a SU(3)L
generator can be written in terms of the Gellmann matrix, T aS = Sλa/2+λa/2S

T .

The corresponding covariant derivative can be written in terms of the generators

of the SU(3) triplet

DµS = ∂µS − ig
[
SWµ + SW T

µ

]
− igX

X√
6
XµS. (1.3)
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1.3 The 3-3-1 with arbitrary β

Left and right leptons are assigned to SU(3)L representations as follows:

L′aL =

 e′a
−ν ′a
E′a


L

∼
(

1 , 3∗ ,−1

2
+

β

2
√

3

)
, a = 1, 2, 3,

e′aR ∼ (1 , 1 ,−1) , ν ′aR ∼ (1 , 1 , 0) , E′aR ∼
(

1 , 1 ,−1

2
+

√
3β

2

)
, (1.4)

where numbers in the parentheses present the representations and the hypercharge X

of the gauge groups SU(3)C , SU(3)L and U(1)X , respectively.

The quark sector is arranged to guarantee anomaly cancellation, namely

Q′iL =

 u′i
d′i
J ′i


L

∼
(

3, 3 ,
1

6
− β

2
√

3

)
, Q′3L =

 d′3
−u′3
J ′3


L

∼
(

3, 3∗ ,
1

6
+

β

2
√

3

)
,

u′aR ∼
(

3, 1 ,
2

3

)
, d′aR ∼

(
3, 1 ,

−1

3

)
, J ′iR ∼

(
3, 1 ,

1

6
−
√

3β

2

)
, J ′3R ∼

(
3, 1 ,

1

6
+

√
3β

2

)
,

where i = 1, 2, a = 1, 2, 3 v JaL,R are exotic quarks.

Three scalar triplets are introduced to generate masses for gauge bosons and fermions:

χ =

 χ+A

χ+B

χ0

 ∼ (1, 3 ,
β√
3

)
, ρ =

 ρ+

ρ0

ρ−B

 ∼ (1, 3 ,
1

2
− β

2
√

3

)
,

η =

 η0

η−

η−A

 ∼ (1, 3 ,−1

2
− β

2
√

3

)
, (1.5)

where, A,B denote electric charges defined: A = 1+β
√

3
2 and B = −1+β

√
3

2 . These

Higgs bosons develop vevs defined as 〈χ0〉 = v3√
2
, 〈ρ0〉 = v2√

2
, 〈η0〉 = v1√

2
, leading

to: χ0 = v3+r3+ia3√
2

, 〈ρ0〉 = v2+r2+ia2√
2

, and η0〉 = v1+r1+ia1√
2

. The symmetry breaking

happens in two steps: SU(3)L⊗U(1)X
v3−→ SU(2)L⊗U(1)Y

v1,v2−−−→ U(1)Q. It is therefore

reasonable to assume that v3 > v1, v2. At the second breaking step, ρ and η play roles

of the two SU(2)L doublets, similarly to the case appearing in 2HDM.



Chapter 2

ANALYTIC FORMULAS FOR

LFVHD IN THE FLIPPED 3-3-1

MODEL

2.1 LFV sources and the couplings related to the decay LFVHD

The following terms are involved with LFVHD couplings:

LLFV
ffV = g

[
EeLγ

µeL +
1√
2

(
EµLγ

µµL + EτLγ
µτL
)]
V 0
µ + h.c.

= g

[
(V E∗
L )3iEiγ

µPLe+
1√
2

[
(V E∗
L )1iEiγ

µPLµ+ (V E∗
L )2iEiγ

µPLτ
]]
V 0
µ + H.c..

In the physical basis, the Yukawa couplings ffs0 involve LFVHD as below:

Lsff = −
H0∗

1

k1
[mµµRµL +mτ τRτL]− σ0

1

3∑
i=1

∑
j=1,2

Y σ
0
1

ji EiPRe(j+1)

− h∗6
3∑
i

[
2∑
j=1

Y h6

ji EiPLe(j+1) + Y h6

3i EiPLe

]
+ H.c, (2.1)

where the coupling Y sji, i, j = 1, 2, 3, is defined as follows:

Y σ
0
1

ji =

{ me(j+1)

k1
(V E∗
L )ji, j = 1, 2,

0, j = 3
, Y h6

ji = s2sY
`
ji; j = 1, 2, 3, s2s =

c2snS
n2

. (2.2)

The one-loop Feynman diagrams that contribute to the LFVHD amplitude are shown

in Fig. 2.1.
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Figure 2.1: One-loop Feynman diagrams for decay h → eaeb in the unitary gauge, where s0, s01, s
0
2 =

h6, σ
0
1 .

2.2 Analytical formulas of decay amplitude h→ µτ

The partial decay width of the decays h→ eaeb is defined as follows:

Γ(h→ eaeb) ≡ Γ(h→ e−a e
+
b ) + Γ(h→ e+

a e
−
b ) =

mh

8π

(
|∆(ba)L|2 + |∆(ba)R|2

)
,

with the condition mh � ma,b and ma,b charged lepton, a, b = 1, 2, 3 corresponding

to e, µ, τ . The LFVHD decay rate is BR(h → eaeb) = Γ(h → eaeb)/Γ
total
h where

Γtotal
h = 4.1× 10−3 GeV. The ∆(ba)L,R can be written as:

∆(ba)L,R =

5∑
i=1

∆
(i)
(ba)L,R

. (2.3)

We focus only to ∆
(1)
(ba)L,R

= ∆(ba)L,R with the following main contribution:

∆(32)L,R = ∆σ0
1σ

0
1

(32)L,R
+ ∆σ0

1h6

(32)L,R
+ ∆h6σ

0
1

(32)L,R
, ∆(b1)L,R = ∆σ0

1h6

(b1)L,R
, b = 2, 3,

∆σ0
1σ

0
1

(32)L
=
mτλ13mW

16π2g
×

3∑
i=1

Y σ
0
1∗

1i Y σ
0
1

2i

[
−C2(0, 0;m2

Ei ,m
2
σ0
1
,m2

σ0
1
)
]
,

∆σ0
1σ

0
1

(32)R
=
mµλ13mW

16π2g
×

3∑
i=1

Y σ
0
1∗

1i Y σ
0
1

2i

[
C1(0, 0;m2

Ei ,m
2
σ0
1
,m2

σ0
1
)
]
,

∆σ0
1h6

(32)L
=− fφs2s

32π2
×

3∑
i=1

Y σ
0
1∗

1i Y h6

2i

[
mEiC0(0, 0;m2

Ei ,m
2
σ0
1
,m2

h6
)
]
,

∆h6σ
0
1

(32)R
=− fφs2s

32π2
×

3∑
i=1

Y σ
0
1

1i Y
h6∗

2i

[
mEiC0(0, 0;m2

Ei ,m
2
h6
,m2

σ0
1
)
]
,

∆σ0
1h6

(b1)R
=− fφs2s

32π2
×

3∑
i=1

Y σ
0
1

3i Y
h6∗

(b−1)i

[
mEiC0(0, 0;m2

Ei ,m
2
h6
,m2

σ0
1
)
]
,

where C0,1,2 are one-loop three-point Passarino-Veltman (PV) functions.

In the unitary gauge, the one-loop three point Feynman diagrams contributing to

the decay amplitudes eb → eaγ (a < b) are shown in Fig. 2.2. For low energy, the
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Figure 2.2: One-loop diagrams contributing to C(ba)L,R for decays eb → eaγ, where s0 = σ0
1 , h6.

branching ratios of the cLFV decays can be written in a more convinient form as

follows:

BR(eb → eaγ) =

(
1− m2

a

m2
b

)3

× 3αe

2π

(∣∣F(ba)L

∣∣2 + |F(ba)R|2
)
× BR(eb → eaν̄aνb),

where αe ' 1/137, F(ba)L,R =
C(ba)L,R

mb
×
(

g2e
32π2m2

W

)−1

and C(ba)L,R is the one loop con-

tributions originated from diagrams shown in Fig. 2.2. The well-known experimental

values of BR(eb → eaν̄aνb) are BR(τ → µν̄µντ ) ' 17.41%, BR(τ → eν̄eντ ) ' 17.83% v

BR(µ→ eν̄eνµ) ' 100%. Using the limit m2
a,m

2
b ' 0, the results are as follows:

F(ba)L,R = F
(1)
(ba)L,R

+ F
(2)
(ba)L,R

,

F
(1)
(32)L

=

3∑
i=1

2m2
WY

σ0
1∗

1i Y σ
0
1

2i

g2m2
σ0
1

gs(tσ0
1 ,i

) +

3∑
i=1

2mµm
2
WY

h6∗
1i Y h6

2i

mτg2m2
h6

gs(th6,i),

F
(1)
(32)R

=

3∑
i=1

2mµm
2
WY

σ0
1∗

1i Y σ
0
1

2i

mτg2m2
σ0
1

gs(tσ0
1 ,i

) +

3∑
i=1

2m2
WY

h6∗
1i Y h6

2i

g2m2
h6

gs(th6,i),

F
(1)
(b1)L

=
me

mb
F

(1)
(b1)R

=

3∑
i=1

2mem
2
WY

h6∗
3i Y h6

(b−1)i

mbg2m2
h6

gs(th6,i),

F
(2)
(32)L

=
mµ

mτ
F

(2)
(32)R

=
2m2

W

m2
V 0

3∑
i=1

V ′E1i V
′E∗

2i gv(tv,i),

F
(2)
(b1)L

=
me

mb
F

(2)
(b1)R

=
2m2

W

m2
V 0

3∑
i=1

V ′E3i V
′E∗

(b−1)igv(tv,i), (2.4)

where tx,i = m2
Ei
/m2

x (x = σ0
1, h6, V

0),

V ′Eai =

{
(V E
L )ai, a = 3

1√
2
(V E
L )ai, a = 1, 2

, (2.5)

and gs(ts,i), gv(tv,i) are known functions . We note that σ0
1 contribute to only LFV

decay τ → µγ and h→ µτ .



Chapter 3

NUMERICAL RESULTS AND

DISCUSSIONS FOR DECAY

h→ µτ IN THE FLIPPED 3-3-1

MODEL

3.1 Constraints of the parameters space

In this numerical discussion, the unknown input parameters are: mEi and sEij ; mσ0
1
, mh6

and s2s; k1 and n2. The related dependent parameters are

nS =
s2sn2

c2s
√

2
, n22(1 + 2t22s) =

(3− 4s2W )m2
Z′

4g2c2W
, (3.1)

where t2s ≡ s2s/c2s. This means that n22 + 4n2S ' (2.15mZ′)
2. For the latest lower bound

of m2
Z′ ≥ 4 TeV for

√
n22 + 4n2S ≥ 8.3 TeV. For our numerical investigation, we will fix√

n22 + 4n2S = 8.3 TeV, n2 = 1 TeV, nS ≥ 4 TeV, leading to t2s =
√

2nS/n2 = 4
√

2,

equivalently s2s ' 0.985. The large s2s corresponds to large Yukawa coupling Y h6 given in

Eq. (2.2). Hence we will choose that 10 GeV ≤ k1 ≤ 50 GeV. Choosing of mEi allow large

BR(h→ ebea): mEi −mEj = O(102) GeV.

The default values of the inputs are k1 = 20 GeV, λ13 = 1, fφ = 2 TeV, mE1 = 1 TeV,

mEk = mE1 − k× 100 GeV, n2 = 1 TeV, s2s = 0.985, mσ0
1

= mh6 = 1 TeV. The perturbative

limit of the Yukawa couplings relating with heavy lepton masses gives mE1 ≤ n2
√

4π = 3.5

TeV for n2 = 1 TeV. All other well-known parameters are: mh = 125.01 GeV and total decay

width Γh = 4.07× 10−3 GeV; mW , me, mµ, mτ , the gauge couplings and αe.

3.2 Numerical results and discussion

In the case of s12 = 1/
√

2 and s13 = s23 = 0, we always have BR(h→ µe) = BR(h→ τe) =

BR(µ → eγ) = BR(τ → eγ) = 0. In contrast, the BR(h → τµ) and BR(τ → µγ) may be

large and drawn as a function of mE1 with different fixed k1. The numerical results are shown

in Fig 3.1. It can be seen that BR(τ → µγ) is much smaller than the current experimental

9
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Figure 3.1: BR(h→ τµ) and BR(τ → µγ) as functions of mE1 in the case sE12 = 1√
2
, sE13 = sE23 = 0.

bound. The BR(h → τµ) ∼ O(10−3) is close to the current experimental bound. the lower

bounds obtained from near future experiments can be used to constrain the parameter space

of the model. The two parameters k1 and mE1 affect strongly on BR(h→ τµ).

Similarly, with sE12 = sE23 = 0 and sE13 = 1√
2
, illustrations of these branching ratios as

functions of mE1 with different fixed k1 are shown in Fig. 3.2. Accordingly, BR(µ → eγ) ≤
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Figure 3.2: BR(h→ µe) and BR(µ→ eγ) as functions of mE1
in the case sE13 = 1√

2
and sE12 = sE13 = 0.

O(10−15), which still satisfies the uppep experimental bound. It is noted that although

BR(h→ µe) is sensitive to k1, the BR(µ→ eγ) is not, because it does not receive contribution

from Yukawa coupling of σ01.
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Figure 3.3: BR(h→ τe) and BR(τ → eγ) as functions of mE1 in the case sE23 = 1√
2

and sE12 = sE13 = 0.

The case of sE12 = sE13 = 0 and sE23 = 1√
2
, illustrations of these branching ratios as

functions of mE1 with different fixed k1 are shown in Fig. 3.3. The BR(h → τe) has the

same order of BR(h → τµ), because both of them get dominant contributions from ∆
σ0
1h6

(ba)R
.

The BR(τ → eγ) is much smaller than the current and upcoming experimental sensitivities.



Chapter 4

ANALYSIS OF RESULTS FOR

DECAYS h→ Zγ, γγ IN THE 3-3-1

MODEL WITH ARBITRARY β

4.1 The couplings related to the decays h→ Zγ, γγ

Feynman rules for the SM-like Higgs boson coupling with charged Higgs bosons

related to the decays h→ Zγ and h→ γγ are shown in Table 4.1.

Vertex Coupling: −iλhss
−iλhH+H− iv

[
2s12c12 (−λ1c12 cα + λ2s12 sα) +

(
sαc

3
12 − cαs312

)
λ12 − cδλ̃12

]
−iλhHAH−A ic213

{
v
[
sαc12

(
λ12 + t213λ23

)
− cαs12

(
2λ1 + t213(λ13 + λ̃13)

)]
+ v3t13

(
2fsα
v3
− cαλ̃13

)}
−iλhHBH−B ic223

{
v
[
sαc12

(
2λ2 + t223(λ23 + λ̃23)

)
− cαs12

(
λ12 + t223λ13

)]
+ v3t23

(
sαλ̃23 − 2fcα

v3

)}
Table 4.1: Feynman rules for the SM-like Higgs boson couplings with charged Higgs bosons

The Yukawa coupling of the SM-like Higgs boson with fermion in SM are shown in

Table 4.2. The Feynman rules: −i
(
Yhf̄fLPL + Yhf̄fRPR

)
for each coupling hf̄f . Both

−iYheaeaL,R −iYhuiuiL,R −iYhu3u3L,R −iYhdidiL,R −iYhd3d3L,R
−imeav

(
cδ − sδ

t12

)
−imuiv

(
cδ − sδ

t12

)
−imu3v (cδ + t12sδ) −imdiv (cδ + t12sδ) −imd3v

(
cδ − sδ

t12

)
Table 4.2: Yukawa couplings of the SM-like Higgs boson

neutral Higgs bosons h and h0
2 do not couple to exotic fermions. In contrast, h0

3 couples

only to the exotic fermions, while does not couple to the SM ones.

The couplings of Higgs and gauge bosons arise from Lagrangian:

LHkin =
∑
v

ghvvgµνhv
−QµvQν +

∑
s,v

[
−ig∗hsvv

−Qµ (s+Q∂µh− h∂µs+Q
)
h.c.
]

+
∑
s

igZssZ
µ
(
s−Q∂µs

Q − sQ∂µs−Q
)

+
∑
s

ieQAµ
(
s−Q∂µs

Q − sQ∂µs−Q
)

11
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+
∑
s,v

[
igZvsZ

µvQνs−Qgµν + ig∗ZvsZ
µv−QνsQgµν

]
+ ..., (4.1)

where s = H±, H±A, H±B and v = W,Y, V . We only list the relevant terms con-

tributing to the decays h → Zγ, γγ and ignore the remaining terms. The Feyn-

man rules for particular couplings are shown in Table 4.3, where ∂µh → −ip0µh and

∂µs
±Q → −ip±µs±Q. The notations p0, p± are incoming monenta of h and s±.

Vertex Coupling: Vertex Coupling

ghW+W− gmW cδ ghY +AY −A gmW cαs12

ghV +BV −B −gmW sαc12 ghH−W+
g sδ
2

ghH−AY A − g c13cα2 ghH−BV B
g c23sα

2

Table 4.3: Feynman rules for couplings of the SM-like Higgs boson to Higgs and gauge bosons.

The Feynman rules for the couplings of Z to charged Higgs and gauge bosons in

(4.1) are given in Table 4.4.

Vertex Coupling

gZH+H−
g

2cW

(
cθ c2W +

sθ[
√
3c2W (1−2s212)+3βs2W ]
3cW
√

1−β2t2W

)
gZHAH−A

g
2cW

(
cθ
[
s213 − (1 +

√
3β)s2W

]
+

sθ[
√
3c2W (s213−2)+3β(

√
3β+c213)s

2
W ]

3cW
√

1−β2t2W

)
gZHBH−B

ig
2cW

(
−cθ

[
s223 + (

√
3β − 1)s2W

]
+

sθ[
√
3c2W (s223−2)+3β(

√
3β−c223)s

2
W ]

3cW
√

1−β2t2W

)
gZW+H− − gmW (2s12c12sθ)√

3(1−β2t2W )

gZY AH−A , g2c13
4

{
cθcW

[
s12
(
1 + (2 +

√
3β)t2W

)
v + t13(1−

√
3βt2W )v3

]
gZY −AHA + sθ

3
√

1−β2t2W

[
s12
(√

3− 3β(2 +
√

3β)t2W
)
v +
√

3t13
(
1 + 3β2t2W

)
v3
]}

gZV BH−B , g2c23
4

{
cθcW

[
c12
(
−1 + (−2 +

√
3β)t2W

)
v − t23(1 +

√
3βt2W )v3

]
gZV −BHB + sθ

3
√

1−β2t2W

[
c12
(√

3− 3β(−2 +
√

3β)t2W
)
v +
√

3t23
(
1 + 3β2t2W

)
v3
]}

Table 4.4: Feynman rules of couplings with Z to charged Higgs and gauge bosons.

The couplings of Z and photon Aµ with fermions arise from Lagrangian:

Lfkin ⊃
∑
f

[
g cθ
cW

fγµ
(
gfLPL + gfRPR

)
fZµ + eQffγ

µfAµ

]
, (4.2)

where f runs over all fermions in the 3-3-1β model, Qf is the electric charge of the

fermion f . Values of gfL,R are shown in Table 4.5.

The triple couplings of three gauge bosons arise from:

LgD = −1

4

8∑
a=1

F aµνF
aµν , (4.3)
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f gfL gfR

ea − 1
2 + s2W +

tθ cW (1−
√
3βt2W )

2
√

3(1−β2t2W )
s2W

(
1− tθ β

cW
√

1−β2t2W

)
ui

1
2 −

2
3s

2
W +

tθ cW (βt2W−
√
3)

6
√

1−β2t2W
− 2

3s
2
W

(
1− tθ β

cW
√

1−β2t2W

)
u3

1
2 −

2
3s

2
W +

tθ cW (βt2W+
√
3)

6
√

1−β2t2W
− 2

3s
2
W

(
1− tθ β

cW
√

1−β2t2W

)
di − 1

2 + 1
3s

2
W +

tθcW (βt2W−
√
3)

6
√

1−β2t2W

1
3s

2
W

(
1− tθ β

cW
√

1−β2t2W

)
d3 − 1

2 + 1
3s

2
W +

tθcW (βt2W+
√
3)

6
√

1−β2t2W

1
3s

2
W

(
1− tθ β

cW
√

1−β2t2W

)
Table 4.5: Couplings of Z with fermions

where

F aµν = ∂µW
a
ν − ∂νW a

µ + g

8∑
b,c=1

fabcW b
µW

c
ν , (4.4)

fabc (a, b, c = 1, 2, ..., 8) are SU(3) structure constants. The couplings are defined as:

LgD →− gZvvZ
µ(p0)v+Qν(p+)v−Qλ(p−)× Γµνλ(p0, p+, p−),

− eQAµ(p0)v+Qν(p+)v−Qλ(p−)× Γµνλ(p0, p+, p−), (4.5)

where Γµνλ(p0, p+, p−) ≡ gµν(p0−p+)λ+gνλ(p+−p−)µ+gλµ(p−−p0)λ and v = W,V, Y .

The involved couplings of Z are given in Table 4.6.

Vertex Coupling

−igZW+νW−λ −igcW cθ
−igZY AY −A

ig
2

[
cθ
(
−cW +

√
3βsW tW

)
+ sθ

√
3− 3β2t2W

]
−igZV BY −B

ig
2

[
cθ
(
cW +

√
3βsW tW

)
+ sθ

√
3− 3β2t2W

]
Table 4.6: Feynman rules for triple gauge couplings relating with the decay h→ Zγ, γγ.

4.2 Analytic formulas of the amplitude of the decays h →
Zγ, γγ

In the unitary gauge, the above couplings generate one-loop three point Feynman

diagrams contributing to the decay amplitude h → Zγ, as given in Fig. 4.1. The

partial decay width is

Γ(h→ Zγ) =
m3
h

32π
×
(

1−
m2
Z

m2
h

)3

|F21|2, (4.6)

where F21 is sum of all one-loop contributions corresponding to all diagrams:

F 331
21 =

∑
f

F 331
21,f +

∑
s

F 331
21,s +

∑
v

F 331
21,v +

∑
{s,v}

(
F 331

21,vss + F 331
21,svv

)
. (4.7)
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Figure 4.1: One-loop three-point Feynman diagrams contributing to the decay h→ Zγ in the unitary

gauge, where fi,j are the SM leptons, si,j = H±, H±A, H±B , vi,j = W±, Y ±A, V ±B .

The partial decay width of the decay h→ γγ can be calculated as

Γ(h→ γγ) =
m3
h

64π
× |F 331

γγ |2, F 331
γγ =

∑
f

F 331
γγ,f +

∑
s

F 331
γγ,s +

∑
v

F 331
γγ,v. (4.8)

To determine the BR of a SM-like Higgs decay, we need to know the total decay width

ΓSM
h . The BR of a particular decay channel h→ XX, XX = gg, γγ, Zγ:

BRSM(h→ XX) ≡ ΓSM(h→ XX)

ΓSM
h

. (4.9)

The respective signal strength of one loop-induced predicted by 3−3−1β is defined

as:

µ331
X ≡ (cδ + t12sδ)

2 × BR331(h→ XX)

BRSM(h→ XX)
. (4.10)

The recent signal strengths of the two loop-induced decays h → Zγ, γγ are: µZγ <

6.6(5.2) and µγγ = 0.99± 0.14.

Decays of the neutral Higgs boson h0
3

The couplings of neutral heavy Higgs bosons h0
2,3 to fermions are:

Yh0
2ffL,R

=


mf

v

(
cδ
t12

+ sδ
)
, f = ea, ui, d3

mf

v (−cδt12 + sδ) , f = u3, di

0, f = Ea, Ja.

, Yh0
3ffL,R

=

{
0 f = ea, ua, da
mf

v3
f = Ea, Ja

.

The neutral Higgs boson h0
3 that has only one non-zero Yukawa coupling with exotic

fermions. The partial decay width h0
3 → gg in the limit ta � 1 ∀a = 1, 2, 3

Γ(h0
3 → gg) '

α2
sm

3
h0
3

8π3v2
3

. (4.11)
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The partial width of the tree level decay h0
3 → hh when mh0

3
> 2mh is:

Γ(h0
3 → hh) =

|λh0
3hh
|2

8πmh0
3

√
1−

4m2
h

m2
h0
3

=
λ2

13s
4
δv

2
3

8π c412mh0
3

√
1−

4m2
h

m2
h0
3

. (4.12)

The total decay width of the h0
3 is Γh0

3
= Γ(h0

3 → hh) + Γ(h0
3 → gg) + Γ(h0

3 →
γγ) + Γ(h0

3 → Zγ). The other two partial decay widths are defined as follows:

Γ(h0
3 → Zγ) =

m3
h0
3

32π

(
1−

m2
Z

m2
h0
3

)3

|F21(h0
3 → Zγ)|2, Γ(h0

3 → γγ) =
m3
h0
3

64π
|F 331
γγ (h0

3 → γγ)|2,

F 331
21 (h03 → Zγ) =

∑
F=Ea,Ja

F 331
21,F (h03 → Zγ) +

∑
s

F 331
21,s(h

0
3 → Zγ) +

∑
v=Y,V

F 331
21,v(h

0
3 → Zγ)

+
∑
{s,v}

[
F 331
21,vss(h

0
3 → Zγ) + F 331

21,svv(h
0
3 → Zγ)

]
, (4.13)

F 331
γγ (h03 → γγ) =

∑
F=Ea,Ja

F 331
γγ,F (h03 → Zγ) +

∑
s

F 331
γγ,s(h

0
3 → Zγ) +

∑
v=Y,V

F 331
γγ,v(h

0
3 → Zγ),

where s = H±, H±,A, H±,B, v = Y ±,A, V ±,B v {s, v} = {H±,A, Y ±,A}, {H±,B, V ±,B}..



Chapter 5

NUMERICAL DISCUSSIONS OF

THE DECAYS h→ Zγ, γγ IN THE

3-3-1 MODEL WITH

ARBITRARY β

5.1 Constraints of the parameter space

To investigate quantitative deviations between predictions of the two models 3-3-1β

and the SM for decays h → X (X = γγ, Zγ), we define a quantity δµX as follows

δµX ≡
(
µ331
X − 1

)
× 100%. We also introduce a new quantity RZγ/γγ ≡ |δµZγ/δµγγ |

to investigate the relative difference between the two signal strengths. The recent

allowed values relating with the two photon decay is −15% ≤ δµγγ ≤ 13%, the future

sensitivities obtained by experiments we accept here are µγγ = 1 ± 0.04 and µZγ =

1± 0.23, i.e., |δµγγ | ≤ 4% and |δµZγ | ≤ 23%, respectively.

Many well-known quantities used in this section are: mh = 125.09 GeV; mW , mZ ;

the charged fermion masses; v ' 246 GeV, g ' 0.651, αem = 1/137, e =
√

4παem,

s2
W = 0.231.

The unknown independent parameters used as inputs are: β, t12, v3, sδ, mh0
2
, mh0

3
,

λ1, λ̃12, λ̃13, λ̃23, mEa , mJa . We can put mEa = mJa = mF for simplicity. Accordingly

at LHC, mZ′ ≥ 4 TeV for 3-3-1 model with β = −1/
√

3 . Because v3 ∼ O(1) TeV, the

mZ′ is approximately caculated from m2
Z′ = g2v23c

2
W

3[1−(1+β2)s2W ]
. From this, mZ′ > 4 TeV

corresponds to lower bounds of v3 ≥ 10.6, 10.1, 8.2, 3.3 TeV with respective values of

β = 0,±1/
√

3,±2/
√

3,±
√

3. Recent discussion, mZ′ = 3 TeV or v3 ≥ 7.6 TeV for the

3-3-1 models with β = −1/
√

3 is allowed. On the other hand, a model with β =
√

3

still allows rather low SU(3)L scale, mZ′ ' 3.25 TeV, corresponding to v3 ' 2.7 TeV.

We will fixed v = 14 TeV for |β| <
√

3 and v = 3 TeV for |β| =
√

3.

The perturbative limits require that the absolute values of all Yukawa and Higgs self

16
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couplings should be less than
√

4π and 4π, respectively. The result is t12 <
√

2πv/mt '
3.5. We will limit that 0.1 ≤ t12 ≤ 3, which allows large |sθ| ≥ 5 × 10−3. The values

of mh0
2

and mH± will be chosen to satisfy mh0
2
,mH± ≥ 300 GeV.

The Higgs potential is forced to satisfy the vacuum stability condition for the 3-3-1β

model, namely

λi > 0, fij ≡ λij + 2
√
λiλj > 0, f̃ij ≡ λij + λ̃ij + 2

√
λiλj > 0, (5.1)

where i, j = 1, 2, 3 and i < j.

The above discussion allows us to choose the default values of unknown independent

parameters as follows: β = 1/
√

3, sδ = 0.01, λ1 = 1, t12 = 0.8, λ̃12 = λ̃13 = λ̃23 = 0.1,

mh0
2

= 1.2 TeV, mh0
3

= 1 TeV, v3 = 14 TeV, mEa = mJa = 1.5 TeV. We choose the

perturbative limit of Higgs self couplings is 10. In addition, depending on the particular

discussions, changing any numerical values will be noted.

5.2 Numerical discussions

5.2.1 Case 1: λ̃12 ≥ 0

First, we focus on the 2HDM parameters. Fig. 5.1 and 5.2 illustrate numerically

Higgs-self couplings and fij as functions of mh0
2
, and other independent parameters are

fixed as t12 = 0.8 and changing sδ = ±10−2,±5× 10−2

f/v
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|λ13|

|λ23|
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f23
1000 2000 3000 4000

10-5

0.001

0.100

10

mh2
0 [GeV]

sδ= 10
-2

f/v

λ2

λ3

|λ12|

|λ13|

|λ23|

f12

f13

f23
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mh2
0 [GeV]

sδ= 5×10
-2

Figure 5.1: fij and Higgs-self couplings as functions of mh0
2

with sδ > 0 and t12 = 0.8. The horizontal

lines at the value of 10 correspond to the perturbative limit of the Higgs self couplings.

For sδ > 0, the t12 is chosen large enough to satisfy f12 > 0 and mh0
2
> 1 TeV. We

conclude that the vacuum stability requirement f12 > 0 gives strong upper bound on

mh0
2
, where larger sδ gives smaller allowed mh0

2
. Fig. 5.2 illustrates allowed regions for

sδ < 0, where we choose t12 = 0.1, enough small to allow λ2 > 0 and mh0
2
> 1 TeV. In

general, our scan shows that allowed t12 and sθ are affected the most strongly by mh0
2
.

Fig. 5.3 presents allowed regions of t12 and sθ with two fixed mh0
2

= 1 TeV and 2.5

TeV. It can be seen that larger mh0
2

results in smaller allowed |sθ|. The dashed black
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Figure 5.2: fij and Higgs self couplings as functions of mh0
2

with sδ < 0 and t12 = 0.1.

0

0

0.6

0.6

3

5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.10

-0.05

0.00

0.05

0.10

t12

s
δ

λ2, f, |λ12 |, f12 , λ1=1, m
h2
0 = 1 TeV

0

0

0.6

0.6

3

5

0.0 0.5 1.0 1.5 2.0 2.5

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

t12

s
δ

λ2, f, |λ12 |, f12 , λ1=1, m
h2
0 = 2.5 TeV

Figure 5.3: Contour plots of λ2, f , |λ12| and f12 as functions of sθ and t12. The green, blue, orange,

magenta regions are excluded by requirements that 0 < λ2 < 10, f > 0, |λ12| < 10, and f12 > 0,

respectively. Dashed-black curves present constant values of f12.

curves presenting constant values of f12 will be helpful for the discussion on the case

of λ̃12 < 0.

The allowed regions also depend on λ1. It can be seen that λ1 should be large

enough to allow large |sθ|. In the case of large |sθ| = 0.02, the allowed values λ1 and

t12 are shown in Fig. 5.4. It can be seen that only negative sθ allows large f12. The

case of larger |sθ| = 0.05, we can choose mh0
2

= 1.2 TeV so that |sθ| = 0.05 is still

allowed. Both large |sδ| and mh0
2

give narrow allowed regions of t12 and λ1, and small

f12. For small |sδ| < 10−2, the allowed values of mh0
2

and t12 will relax. But it will not

result in much deviation from the SM prediction.

The left panel of Fig. 5.5 illustrates the contour plots with fixed β = −1/
√

3 for

allowed values of δµZγ corresponding to the none-color regions that satisfy the con-

straints of parameters and the recent experimental bound on δµγγ . The right panel
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Figure 5.4: Contour plots of λ2, |λ12| and f12 as functions of λ1 and t12 with some fixed mh0
2

. The

green, blue, orange, magenta regions are excluded by requirements that 0 < λ2 < 10, f > 0, |λ12| < 10,

and f12 > 0, respectively. Dashed-black curves present constant values of f12.

of Fig. 5.5 shows the contour plots of RZγ/γγ , where the non color region satisfies

RZγ/γγ ≥ 2. In this region, we can see that |sδ| ∼ O(10−3) and negative. In

addition, δµγγ < 0.04. Hence, the current constraints µγγ = 0.99 ± 0.14 predicts

|δµZγ | < 0.15 which is still smaller than the future sensitivity δµZγ = ±0.23. In addi-

tion, most of the allowed regions satisfies 0.8 ≤ RZγ/γγ ≤ 2, hence the approximation

Br(h→ γγ) ' Br(h→ Zγ) is accepted for simplicity in previous works.

For large v3 = 14 TeV and recent uncertainty of the δµγγ , our investigation shows

generally that the above discussions on the allowed regions as well as RZγ/γγ illustrated

in Fig. 5.5 depend weakly on β. The results are also unchanged for lower bound of

v3 = 8 TeV which is allowed for β = ±2/
√

3. This property can be explained by the

fact that, large v3 ' 10 TeV results in heavy charged gauge bosons mY ,mV ≥ 4TeV,

and the charged Higgs masses being not less than 1 TeV. As a by product, one loop

contributions from SU(3)L particles to F 331
21 and F 331

γγ are at least four orders smaller

than the corresponding SM amplitudes F SM
21,γγ , illustrations are given in table 5.1. Here

β sδ t12
F331
21,s

Re[FSM
21 ]

F331
21,v

Re[FSM
21 ]

F331
21,sv

Re[FSM
21 ]

F331
γγ,s

Re[FSM
γγ ]

F331
γγ,v

Re[FSM
γγ ]

δµZγ δµγγ

2√
3

2× 10−2 1.5 −3.3× 10−4 3× 10−5 −1.6× 10−4 −6× 10−4 5.5× 10−4 4.4 6.5
2√
3
−2× 10−2 1.5 ∼ 10−6 3× 10−5 −1.5× 10−4 ∼ 10−6 5.3× 10−4 −5.4 −6

2√
3

2× 10−2 0.5 1.3× 10−4 −9× 10−5 −5× 10−5 2.3× 10−4 2.2× 10−4 6.8 8.1
2√
3
−2× 10−2 0.5 −4.2× 10−4 −9× 10−5 −4× 10−5 −7.5× 10−4 2.1× 10−4 −7.5 −7.4

2√
3

−10−3 1.5 −1.6× 10−4 3× 10−5 −1.6× 10−4 −2.9× 10−4 5.4× 10−4 −0.8 −0.2

Table 5.1: Numerical contributions of SU(3)L particles to F 331
21 and F 331

γγ , where F 331
21,sv ≡ F 331

21,svv +

F 331
21,vss.
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Figure 5.5: Contour plots showing allowed regions of sδ and t12 (left) and RZγ/γγ as a function of

sδ and t12. The green, blue, orange, magenta and yellow regions are excluded by valid requirements

of λ2, f, λ12, f12, and δµγγ , respectively. The black and dotted black curves show constant values of

δµZγ and δµγγ , respectively. The non color region in the right panel corresponds to RZγ/γγ ≥ 2.

we use the SM amplitudes Re[F SM
21 ] = −5.6 × 10−5 [GeV−1] and Re[F SM

γγ ] = −3.09 ×
10−5 [GeV−1]. We note that F 331

21,sv may be significantly larger than F 331
21,v, hence both of

them should be included simultaneously into the decay amplitude h→ Zγ in general.

For large and positive λ̃12 and small mh0
2
, one loop contributions from H± to F 331

21

and F 331
γγ are dominant but still not large enough to give significant deviations to δµZγ ,

see an illustration with suppressed sδ = 10−3 in the first line of table 5.2. Here we

β sδ t12
F 331

21,s

Re[FSM
21 ]

F 331
21,v

Re[FSM
21 ]

F 331
21,sv

Re[FSM
21 ]

F 331
γγ,s

Re[FSM
γγ ]

F 331
γγ,v

Re[FSM
γγ ] δµZγ δµγγ

2√
3

10−3 1.7 −1.46× 10−2 4× 10−5 −1.7× 10−4 −2.64× 10−2 5.7× 10−4 −3.1 −4.7
2√
3

−10−3 1.7 −1.44× 10−2 4× 10−5 −1.7× 10−4 −2.61× 10−2 5.7× 10−4 −3.6 −5.3
2√
3

3× 10−2 1.5 −1.24× 10−2 3× 10−5 −1.6× 10−4 −2.23× 10−2 5.5× 10−4 4.4 5.2
2√
3
−3× 10−2 1.5 −9.6× 10−3 3× 10−5 −1.5× 10−4 −1.75× 10−3 5.3× 10−4 −9.6 −12.3

Table 5.2: Numerical contributions of SU(3)L particles to F 331
21 and F 331

γγ for large λ̃12 = 5 and small

mh0
2

= 600 GeV.

always force |δµγγ | ≤ 4% being the future sensitive of µγγ .

Regarding β =
√

3, where v3 = 3 TeV is still accepted, the allowed regions change

significantly, as illustrated in Fig. 5.6. In particularly, the model gives more strict

positive sδ < 0.03. One-loop contributions from SU(3)L particles can give deviations

up to few percent for both δµZγ , δµγγ , while two contours δZγ = δµγγ = 0 distinguish

with the line sδ = 0. Interesting numerical values are illustrated in Table 5.3.

We emphasize two important properties. First, one loop contributions from gauge

SU(3)L bosons are dominant, which can give δµγγ to reach the future sensitivity.

Second, values of F 331
21,v and F 331

21,sv can have the same order of 10−3 compared with the
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Figure 5.6: Contour plots showing allowed regions of sδ and t12 with v3 = 3 TeV. The green, blue,

orange, magenta and yellow regions are excluded by valid requirements of λ2, f, λ12, f12, and δµγγ ,

respectively. The black and dotted black curves show constant values of δµZγ and δµγγ , respectively.

β sδ t12
F 331

21,s

Re[FSM
21 ]

F 331
21,v

Re[FSM
21 ]

F 331
21,sv

Re[FSM
21 ]

F 331
γγ,s

Re[FSM
γγ ]

F 331
γγ,v

Re[FSM
γγ ] δµZγ δµγγ

√
3 10−3 1.5 −1.8× 10−4 −1.6× 10−3 −4× 10−3 −3.2× 10−4 2.2× 10−2 −1.6 4.8√
3 −10−3 1.5 −1.6× 10−4 −1.7× 10−3 −4× 10−3 −2.9× 10−4 2.2× 10−2 −2 4.2

Table 5.3: Numerical contributions of SU(3)L particles to F 331
21 and F 331

γγ . Notations are given from

caption of table 5.1.

SM part, but they are not large enough to result in large deviation of |δµZγ | > 23%.

We stress here an interesting point that with the existence of new Higgs and gauge

bosons, their contributions F 331
γγ,s and F 331

γγ,v to the decay amplitude h → γγ may be

destructive and the same order, hence keep the respective signal strength satisfying the

small experimental constraint. Simultaneously, all of the contributions to the decay

amplitude h→ Zγ are constructive so that the deviation can be large. For the model

with β =
√

3 and v3 = 3 TeV, we can find this deviation can reach around −10, but

this values is still far from the expected sensitive δµZγ = ±23%. For the models with

v3 ≥ 8 TeV, heavy gauge contributions are suppressed, hence large contribution from

charged Higgs bosons is dominant. Then, the constraint from δµγγ will give more strict

constraint on δµZγ than that obtained from the experiments.

5.2.2 Case 2: λ̃12 < 0.

With λ̃12 < 0, constructive contributions appear in the decay amplitude h → γγ,

while destructive contributions appear in the decay amplitude h → Zγ. Hence, the



22

constraint from experimental data of the decay h → γγ predicts smaller deviation of

the µZγ than that corresponding to λ̃12 > 0.

5.2.3 h03 decays as a signal of the 3− 3− 1β model

Different contributions to loop-induced decays h03 → γγ, Zγ with small sθ = 10−3,

mh0
3

= 700 GeV, t12 = 0.8 are illustrated in Fig. 5.7, where the ratios |F21,x(h03 →
Zγ)|/|F21(h

0
3 → Zγ)| and |Fγγ,x(h03 → Zγ)|/|Fγγ(h03 → Zγ)| are presented, x = f, s, v, sv.

The contributions from heavy exotic fermions are alway dominant for large β. While
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F21,v

F21,sv
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Figure 5.7: Different contributions to loop-induced decays h03 → γγ, Zγ as functions of β.

F21,sv is suppressed. For the decay h03 → γγ, the destructive correlation between Fγγ,v

and Fγγ,f happens with small |β|.
Individual branching ratios of h03 are shown in Fig. 5.8. The most interesting prop-
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Figure 5.8: Branhching ratios of the h03 decays as functions of β.

erty is that, the BR(h03 → γγ) may have large values and it is very sensitive with the

change of β. Hence this decay is a promising channel to fix the β value once h03 exists.

On the other hand, BR(h03 → hh) is sensitive with sδ: it increases significantly with

large sδ, but the values is always small BR(h03 → hh) < 1%.



CONCLUSIONS

Investigating the two SM-like Higgs boson decays h→ Zγ in the 3-3-1β model and

h→ µτ in the flipped 3-3-1 model, we obtain the following new results:

• In the flipped 3-3-1 model:

+ We have established the analytic formulas expressing one-loop contributions to

the branching ratio of the decays h→ µτ, µ→ eγ.

+ Determining allowed regions of the parameter space that satisfy the experi-

mental bound on cLFV. At the same time, the LFVHD branching ratio is large

enough for experiments to be measured. Investigating the dependencies of Br(h→
µτ, µ→ eγ) on the parameters (ME), (sij), (k1), new results are:

- The main LFV sources originate from the heavy charged leptons. One loop

contributions to the LFV decay amplitudes h → µτ and τ → µγ are larger than

those of h→ τe, µe and τ, µ→ eγ, respectively.

- Br(h→ τµ, τe) and Br(h→ µe) can reach the orderO(10−3−10−4) andO(10−6)

respectively, very close to the recent experimental lower bounds. They should be

used for constraining the parameter space for future improved lower bounds.

- BR(τ → µγ, eγ) ≤ O(10−14), much smaller than the planed sensitivities of

upcoming experiments. BR(µ → eγ) can reach the order of O(10−15) which is

more promising for searching by experiments.

• In the 3-3-1β model:

+ One-loop contribution on BR(h → Zγ, γγ). They depend weakly on β. F 331
21,sv

and F 331
21,v can have the same order. Hence, F 331

21,sv should not be ignored. For

β =
√

3, gauge and Higgs contributions may be large and have the same order.

+ There may exist recent gauge extensions of the BSM that allow large |δµZγ |,
while still satisfy the future experimental constraint |δµγγ | ≤ 0.04.

+ Our numerical investigation obtains: (i) The large deviations δµZγ originate

from the one-loop contribution of H± and large |sδ|, and |δµZγ | ≤ |δµγγ | < 0.23

for large vχ ≥ 14 TeV. In the 3-3-1 with β =
√

3 and v3 ' 3 TeV, δµZγ may

be large in the allowed region µγγ = 0.99 ± 0.14. For the near future sensitivity

|δµγγ | = 0.04, this model still allows |δµZγ | ≤ 0.1, but it canot reach the near

future sensitivity |δµZγ | = 0.23.

- The total decay width of the h0
3 and BR(h0

3 → γγ, Zγ) are an important signal

to distinguish different 3-3-1 models.
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