
INTRODUCTION

1 Reason for choosing topic

X-ray Absorption Fine Structure (XAFS) gives information about the number of atoms

and in a shell Fourier image of the XAFS spectra gives information about the radius of the

atomic layer, so XAFS is one of the empirical methods for analyzing and determining the

structure of the object.

Initially, XAFS theory formulated as harmonic theory, and it was used to calculate some

thermodynamic parameters and give good coincidence with XAFS spectra measured at low

temperature. But when the temperature rises, there is an anharmonic effect and if no at-

tention it can get bias of information physics. From that fact, it was necessary to build

an anharmonic XAFS theoretical model to study the thermodynamic parameters at high

temperatures, and cumulant expansion approximation was born to determine the errors in

anharmonic effect. Initially, the cumulant expansion approximation was used mainly to

match the theoretical construction spectra with the experimental data measured at high

temperatures, and then to derive the physical parameters. The cumulants expansion have

been studied by many scientists given different calculation methods, thereby deducing the

thermodynamic parameters and crystal structure.

Several theories have been formulated to analyze the cumulants of the XAFS spec-

tra with anharmonic contributions in which the Anharmonic-correlated Einstein model

(ACEM) gave experimental results better than the other models. Therefore, the Anharmonic-

correlated Einstein model has been of interest to some groups and has been used to study

the structure of pure and doped solid objects, in which for simple one ignore dispersion of

the phonons in Einstein method. An important development of this method is that the

model takes into account the interactions between the absorbing and scattering atoms with

neighboring atoms in a small cluster of atoms.

In addition to anharmonic effects of temperature, XAFS spectra are also very sensitive

to effects of pressure due to pressure affects on atom displacement. Previous research con-

tents have not seriously considered the dependence on doping ratio and pressure for alloys

cubic structure.

2 Research purposes

(1) Continue to develop and generalize Continue to develop and generalize the ACEM

model while using the ACDM model to build general expressions for thermal expansion,

elastic coefficient, frequency of oscillation and Einstein’s correlation temperature, the first
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cumulant a representation of the asymmetry of the atomic pair potential or lattice expan-

sion, the second cumulant or the Debye-Waller factor, the third cumulant reflect the phase

shift of the XAFS spectra due to the anharmonic effect.

(2) Construct the expression for XAFS with the anharmonic contribution of high tem-

peratures and include the anharmonic XAFS theory at low temperatures.

(3) Build an effective interaction potential with the contribution of neighboring atoms.

Theomodynamic parameter, anharmonic contributions to amplitude and phase of the

XAFS spectra as well as the XAFS spectra.The calculation applied to the pure cubic

crystal structure and alloys, while also considering the effect of pressure on the XAFS

spectra. The results were compared with experiment and other theories.

3 Research methods

- The thesis used the quantum statistical method and perturbation method in which Hamil-

ton’s operator is written as the sum of the harmonic and anharmonic contribution(as a

perturbation). The anharmonic effects are the result of phonon interactions, so the tran-

sition between states carried out through the annihilation and creation operators of the

secondary quantization method.

- The physical quantities are calculated using the density matrix.

- The analytical results have calculated by Matlab software.

4 Scientific significance and practice of the thesis

The research problems posed by the thesis all come from the problems of modern

physics, the obtained results may contribute to perfecting the Anharmonic-correlated Ein-

stein model.

The research results compared with experimental results and other theoretical models

published in prestigious journals showed good coincidence and pointed outstanding advan-

tages of the results in the thesis.

The results of the thesis have published in specialized journals and seriously evaluated

by the reviewers.

5 New contributions of the thesis

The thesis generalization anharmonic correlated Einstein model, construct general an-

alytical expressions of thermodynamic parameters with anharmonic contributions.

With the quantum statistics method, the thesis uses the expressions obtained in the cor-

rect calculation for the entire temperature range. Thermodynamic parameters described

through structural parameters, through these structural parameters, we can predict the

structure of the crystal and the distribution of the atoms on an atomic shell.

The thesis expands on the calculation of thermodynamic and cumulants parameters
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for systems with doped cubic structure and the effect of pressure according to ACEM in

the effective anharmonic XAFS spectra. The numerical results show that there is a good

agreement between the present theory and the experimental results.

6 The layout of the thesis

Chapter 1. Overview of the delicate X-ray absorption fine structure

his program aims to present some general theories about X-rays and Shynchrotron, XAFS

spectroscopy and absorption, XAFS spectroscopy, Fourier image and structural informa-

tion.

Chapter 2. Construct the cumulant expressions and thermodynamic parame-

ters..

The thesis presents a number of cumulant calculation models in order to give specific

comments on the advantages and disadvantages of the models, thereby giving a plan to over-

come the shortcomings, thereby building the optimal method to calculate the cumulants.

of the XAFS spectrum. The thesis presents how to calculate the structural coefficients and

thereby generalize the Einstein model unconditionally correlated through the structural

coefficients, thereby building the computational coefficients of cumulants, thermodynamic

parameters through the structural coefficients and the Debye - Waller factor.

Chapter 3. Theory of the Anharmonic XAFS spectra.

The dissertation gave the formula of XAFS spectra, including anharmonic effects and

described by cumulant expansion approximation. The thesis has also built a new general

analytical expression of the anharmonic factor, and the received expressions reflects the

anharmonicity of atomic oscillation as obtained from the experiment, from which the thesis

calculates the new expressions of the contribution to phase shiff of the anharmonic XAFS

spectra, including the cumulants contribution. The thesis has rewritten the expressions

of the EXAFS spectra, including the anharmonic effects, and the thesis also expanded

to study the pressure dependence and doping ratio of the cumulants and thermodynamic

parameter in the anharmonic XAFS spectra.

Chapter 4 Calculate and discuss the results.

In this chapter, the thesis has calculated the number for the thermodynamic parame-

ters according to the coefficients obtained in chapters 2 and 3. In this thesis, numerical

calculation is applied to some crystals and extended to the doped cube crystal and takes

into account the effect of pressure..

Conclusion: Overview the main results obtained and propose research directions in

the future..



Chapter 1

Overview of the X-ray absorption spectrum

1.1 X-rays and Synchrotron radiation

Continuous X-ray spectrum and interrupted X-ray spectrum

X-rays were discovered by Wilhelm Conrad Röntgen in 1895 and have made an im-

portant contribution to the study of the structure of materials, using X-ray radiation and

Synchrotron radiation as the source of photons in interaction with objects. The result of

this interaction is the spectrum containing information about the electronic and atomic

structure of the solid.

1.2 Spectroscopy XAFS

XAFS spectra with K edge for polycrystalline, has form:

χ(k) =
∑
j

S2
0Nj
k

Fj(k)× Im
[〈

1

r2
j

exp
(

2ikrj −
2rj
λ

)〉
exp
(
iδj(k)

)]
. (1.1)

1.3 Fourier image of the XAFS spectra

It was discovered that the Fourier image of the XAFS spectra gives information about

the structure of the object, namely that the peaks of the Fourier image correspond to the

radius of the atom layers, so through the Fourier image, we get information about the

position r of the atomic shells of the crystal. The Fourier transformation is performed as

follows:

F (r) =

∫
dk

2π
e−2ikrχ(k)kn, n = 1, 2, 3 . . . (1.2)
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Chapter 2

Construct the expressions of the thermodynamic parameters

2.1 Distribution function

XAFS spectra with K:h K edge can be written by the following system:

χ(k) = NF (k)

∫
ρ1(r)

r2
e−2r/λ(k) sin[2kr + δ(k)]dr, (2.1)

N is the number of atoms per atomic shell, F (k), δ(k)is the amplitude and phase of the

scattering, including all the contributions of the absorbing atoms, λ(k) is the average free

step of the photoelectric and depends on the ware-numbe k, ρ1(k) is the probability distri-

bution of the atoms on the shell and the normalized condition gives
∫
ρ1(r)dr = 1, ρ1(r)

is related to the three-dimensional distribution
∫
ρ(r)d3r = 1, by ρ1(r) = 4πr2

〈
ρ(r)

〉
Ω
,

with
〈〉

Ω
represents the average of the angle 4π, ρ1(r) is zero when r < 0. Note that both〈

ρ(r)
〉

Ω
and ρ1(r) can be asymmetry for their average distance if ρ(r) is symmetry.

The distribution function can be as follow:

P (r, γ) ≡ ρ1(r)

r2
e−2γ , (2.2)

and Fourier transform the above system to the form:

P (r, γ; k) ≡
∫
P (r, γ)e2ik(r−r)dr, (2.3)

where γ ≡ λ−1 and r are the parameters late selected. Rewrite equation (2.1) according

to the distribution function

χ(k) = NF (k)Im
[
ei(2kr+δ(k))P (r, γ; k)

]
. (2.4)

We define in the formulas for the real amplitude and phase of oscillation satisfying form

χ(k) ≡ A(k) sinφ(k),

with

A(k) = NF (k)
[
P (r, γ; k)

]
, (2.5)

φ(k) = 2kr + δ(k) + argP (r, γ; k). (2.6)
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These expressions correspond to the amplitude and phase equations of the electron

spectra obtained through Fourier transform.

The distribution function P (r, γ; k) can be expanded according to the displacement

moments of the form effective distribution

P =

∞∑
n=0

(2ik)n

n!
Pn, (2.7)

in which

Pn(r, γ) =

∫
P (r, γ)(r − r)ndr. (2.8)

If r is close to the center of P (r, γ), then the ratio Pn
P0

has the same magnitude as the

exponent n of the distance extension ∆r.

In the above formulas, Pn are functions of r and γ, can be seen in the above expansion,

at small values of k only low order moment are important, but when k increases, higher

order moment will be taken from all contributing orders. The above expansion is essentially

an expansion to the powers of (2k∆r), ∆r the characteristic width in the perturbation of

the distribution.

2.2 Cumulant expansion

The cumulant expansion is performed using the following relation:〈
eξx
〉

= exp
[ ∞∑
n=0

ξnσ(n)

n!

]
, (n ≥ 0), (2.9)

<> is represents the mean of each distribution of the variable x, which will be appropriately

discarded. Obviously σ0 = 0 if the distribution is normalized. We define the cumulants by

the correlation relation∫
P (r, γ)e2ik(r−r)dr ≡ exp

[ ∞∑
n=0

(2ik)n

n!
σ(n)(r, γ)

]
. (2.10)

Expanding the above relation by Taylor series and separating even-order cumulants we

will get expressions of the amplitude of the oscillation

ln
A(k)

NF (k)
= ln |P | =

∞∑
n=0

(−1)n

(2n)!
(2k)2nσ(2n), (2.11)

and odd order cumulants that describe the phase of the atomic oscillation

φ(k)− δ(k) = argP = 2kr +

∞∑
n=0

(−1)n

(2n+ 1)!
(2k)2n+1σ(2n+1). (2.12)

Since the amplitude and phase of the oscillation depend on k it can’t depend on our

choice of r, we see that the cumulant σ(n) with n 6= 1 is independent of the origin point.
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This is also described from the equation (2.10) with relation to r with the use of linear

dependence on powers of k.

The cumulants equal to or less than the power moments, if r = 0 we can obtain the

formulas
dPn
dq

= Pn+1,

and
dσ(n)

dq
= σn+1,

with n ≥ 0 and q ≡ −2γ. According to equations (2.7) (2.8) and (2.10) so

σ(0)(γ) = lnP0(γ).

Combining the above relations, we can write the expansion of cumulants in the following

form

σ(1) =
dσ(0)

dq
=
d lnP0

dq
=

1

p0

dp0

dq
=
p1

p0
= p1, (2.13)

and

σ(2) =
d

dq

p1

p0
= p2 − p2

1, (2.14)

σ(3) = p3 − 3p2p1 + 2p3
1, (2.15)

σ(4) = p4 − 4p3p1 − 3p2
2 + 12p2p

2
1 − 6p2

1, (2.16)

σ(5) = p5 − 5p1p4 + 20p2
1p3 − 60p3

1p2 − 10p2p3 + 30p1p
2
2 + 24p5

1, (2.17)

.....................................................

2.3 Some models compute cumulants

In this part, the thesis briefly introduces some models currently used to approximate

cumulants.

2.3.1 Statistical Moment Method - SMM

SMM has been developed to study the temperature dependence of the spacing between

atoms and the thermodynamic properties of materials. To describe the relationship be-

tween MSRD and MSD for DWF, SMM represents MSRD by form:

σ2 =
〈[

(ui − u0).R
]2〉

=
〈
(ui.R)2

〉
+
〈
(u0.R)2

〉
− 2
〈
(ui.R)(u0.R)

〉
. (2.18)

Using the expressions of the second moment in SMM we get the expression for MSD

and from there we have:

σ2(T ) ≈ 4γ2β3

B5

(
1 +

Z

2

)(
Z + 1

)
+

2βZ

k
+ 2β

k −B
kB

(2.19)
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2.3.2 Path-Integral Effective Potential-PIEP

PIEP has been applied to calculate the cumulants in XAFS anharmonic for multidimen-

sional systems with many degrees of freedom. PIEP is an accurate and efficient method

for calculating cumulants.This method includes quantum effects, anharmonic effect and

computable effects for three-dimensional crystals, as well as systems with many degrees

of freedom. However, the cumulative calculation according to the PIEP method is very

complicated, with many calculation steps with many parameters.

2.3.3 ACDM - Anharmonic Correlation Einstein Model

The ACDM builds on the main ideas is: (1) Consider the correlation contributions of

the neighboring atoms and take into account the dispersion of the phonons. (2) The anhar-

monic effective potential contains the contributions of anharmonic components. (3) The

anharmonic components is considered perturbation and is the result of the phonon-phonon

interaction, in which the lattice displacement is represented by the operator. The cu-

mulant approximation of the anharmonic XAFS function has form:

χ(k) ∼ Im{eiΦ(k)exp
(
2ikR +

∑
n

(2ik)n

n!
σ(n)(T )

)
} (2.20)

Expansion of the interaction potential for a system consisting of one type of atom up

to the 4th order:

Ueff (x) ≈ 1

2
keffx

2 + k3x
3 + k4x

4, (2.21)

The effective anharmonic bonding potential can be determined by

Ueff (x) = U(x) +
∑
i=0,1

∑
i#j

U
(1

2
xR̂01.R̂ij

)
(2.22)

Compare (2.22) with (2.21) we define the effective constants. Due to the dispersion of

the phonon, express the parameter x through the phonon displacement operator containing

the statistical component according to the phonon oscillation frequencies. Consider the

oscillation system of the object N oscillating with a frequency in the range from 0 to

maximum Debye frequency ωD. In a one-dimensional system consisting of only one type

of atom, we have;

ω(q) = 2

√
keff
M
|sin
(qa

2

)
|, |q| ≤ π

a
, (2.23)

At the border of the first Brillouin (BZ) we have

ωD = 2

√
keff
M

, θD =
~ωD
kB

(2.24)

displacement un is related to the phonon Aq shift operator by expression:

xn =
∑
q

eiqanf(q)Aq, f(q) =

√
~

2NMω(q)

(
eiqa − 1

)
. (2.25)
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The Hamiltonian of the system is rewritten as the sum of the non-harmonic H0 and the

Ha non-harmonic components, in which the non-harmonic component Ha consists of the

3rd and 4th components.

Hc = k3x
3 =

∑
q1,2,3

U(q1,2,3)Aq1Aq2Aq3 =
∑
q1,q2,q3

U(q1, q2, q3)Aq1Aq2Aq3 , (2.26)

Hq = k4x
4 =

∑
q1,2,3

U(q1,2,3,4)Aq1Aq2Aq3Aq4 =
∑

q1,q2,q3,q4

V (q1, q2, q3, q4)Aq1Aq2Aq3Aq4 ,

(2.27)

Replace (2.25) to (2.26), 2.27 and the transformation we get;

U(q123) = k3

( ~
2NM

)3/2(∑
n

ei(q1,q2,q3)an
)(eiq1a−1)(eiq2a−1)(eiq3a−1)√

ω(q1)ω(q2)ω(q3)
(2.28)

U(q1234) = k4

( ~
2NM

)2(∑
n

ei(q1+q2+q3+q4)an
)(eiq1a−1)(eiq2a−1)(eiq3a−1) + (iq4a− 1)√

ω(q1)ω(q2)ω(q3)ω(q4)

(2.29)

2.4 Anharmonic-correlated Einstein model-ACEM

Anharmonic-correlated Einstein model (ACEM) is based on the beam correlation contri-

bution nearest neighboring atoms, in which the dispersion of phonons in Einstein’s method

has been omitted for simplicity. An important development in this approach is that the

model takes into account the interactions between the absorbing and scattering atoms with

neighboring atoms in a small cluster of atoms. Therefore, ACEM is described through a

form of effective interaction potential

UE(x) ≈ 1

2
keffx

2 + k3x
3 + . . . , (2.30)

With x = r− r0 is the instantaneous bonding deviation between two atoms in an equi-

librium position, keff is the effective elastic coefficient because it includes all contributions

of neighboring atoms, k3 is the third order parameter that characterizes the anharmonicity

and creates the asymmetry of the interaction potential. Anharmoniccorrelated Einstein

model is determined by the oscillation of a bond pair of atoms with mass M1 and M2

(the absorbing and scattering atoms, respectively). Their vibrations are influenced by

neighboring atoms, so the effective interaction potential in ACEM has a form

UE(x) = U(x) +
∑

j 6=i; i=0, 1

U
(
µ

Mi
xR̂01.R̂ij

)
, (2.31)

with µ = M1M2

M1+M2
is called reduced mass, R̂ is the unit vector, U(x) characterizes the pair

potential between the absorbing and scatering atoms has form:

U(x) = D
[
− 1 + α2x2 − α3x3 +

1

2
α4x4 + . . .

]
. (2.32)
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Vibrations of the atoms are calculated according to quantum statistics with standard har-

monic approximation, in which the Hamiltonian operator of the system is written as;

H =
P 2

2µ
+ UE(x) =

P 2

2µ
+

1

2
keffx

2 + k3x
3 + · · · =

=
P 2

2µ
+
(1

2
keffa

2 + k3a
3
)

+ y
(
keffa+ 3k3a

2
)

+ y2
(1

2
keff + 3k3a

)
+ k3y

3 + · · · . (2.33)

Transform the expression (2.33) we have

H = H0 + UE(a) + δUE(y), (2.34)

From (2.34) we have anharmonic effective potential according to ACEM can be written

in form;

UE(y) = UE(a) +
1

2
keffy

2 + δUE(y). (2.35)



Chapter 3

Theory of the anharmonic XAFS spectra

3.1 XAFS spectroscopy and characteristic quantities

At low temperatures, the calculation of XAFS spectra can be performed in harmonic

approximation since the anharmonic contributions of the thermal vibrations of the atom

are small and can be ignored. But as the temperature rises, the thermal fluctuations

of the atoms cease to be harmonic, and the interaction potential between atoms becomes

asymmetric because of the appearance of anharmonic effects. Thus, we need to build a way

to determine the XAFS spectra, including the contribution of the anharmonic effects. An

approximate cumulant expansion approach often describes the formulation of the XAFS

spectra, including the anharmonic effects. Accordingly, the XAFS oscillator function is

usually written as follows

χ(k) = F (k)
e−2R/λ(k)

kR2
× Im

{
eiφ(k) exp

[
2ikR +

∑
n

(2ik)n

n!
σ(n)
]}
, (3.1)

in the expression, F (k)represents atomic scattering amplitude, φ(k) is the total phase shift

displacement of the photoelectron, k is the number of waves and λ(k) is the average free dis-

tance of the photoelectron, σ(n), n = 1, 2, 3, ... are cumulants, they appear due to function

averaging
〈
eikr
〉
, where the asymmetric terms are expanded in the Taylor series around

the R =< r > value, with r is the average distance between the absorbing and scattering

atoms at temperature T and then the asymmetric components are written in the form of

cumulants.

Expression (3.1) of the XAFS oscillator function includes anharmonic effects that con-

tain the coefficient DWF due to the effects of thermal oscillation of the atoms. The

extinction factor of the XAFS spectra would be ew(k) with

w(k) = 2ikσ(1)(T )− 2k2σ2(T )− 4ikσ2(T )

R

(
1− R

λ(k)

)
−

−4

3
ik3σ(3)(T ) +

2

3
k4σ(4)(T ) + ... (3.2)

Because the anharmonic effect is usually small, XAFS analysis only requires third or fourth

order cumulants, higher order cumulants can be ignored because their contribution to

thermal oscillation is very small.
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In the formula (3.2) only second (DWF) and the fifth term contributes to the amplitude

change, while the first, third and fourth terms contribute to the phase shift of the XAFS

spectra due to the anharmonic effect.

In which the phase of the XAFS spectrum is defined as:

φA(T, k) = 2k
[
σ(1)(T )− 2σ2

A(T )
(

1

R
− 1

λ(k)

)
− 2

3
σ(3)(T )k2

]
. (3.3)

It is evident from the above expression that the phase displacement φA(T ) will rapidly

decrease at low temperatures because the anharmonic values σ(1), σ(3), β are insignificantly

small.

3.2 Anharmonic XAFS spectra and applications

Temperature dependent XAFS spectroscopy including anharmonic effects are written

as:

χ(k, T ) =
∑
j

S2
0Nj

kR2
j

Fj(k)e
−
(

2k2
(
σ2
H(T )+σ2

A(T )
)

+
2Rj
λ(k)

)
×

× sin
[
2kRj + φ(k) + φjA(k, T )

]
. (3.4)

In the above equation S2
0 is the term specific to the polypartic system, Nj is the number

of atoms on the j shell, and the sum sign is for all atomic shells.

3.2.1 The pressure dependence of DWF in the anharmonic XAFS spectra

To consider the pressure dependence of cumulants including DWF we derive from the

expression Grüneisen.

β(T ) = 2γG
∆V

V
, (3.5)

factor γG factor depends on volume and through that is pressure, transform (3.5) we get

the volume dependent of γG for form crystals:

γG
(
V (P )

)
V (P )

= −
γG
(
V0

)
V

= const, (3.6)

with V and V0 are the volume of a crystal at pressure P and zero.

From expressions (3.5) and (3.6), we will get Einstein correlation frequency and Einstein

correlation temperature depending on pressure:

ωE
(
V (P )

)
= ωE(V0) exp

[
γG(V0)

(
1− V (P )

V0

)]
, (3.7)

θE
(
V (P )

)
=

~ωE
(
V (P )

)
kB

, (3.8)
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V (P )

V0)
=
r3(P, T )

r3(0, 0),
(3.9)

here, r(P, T ) is the instantaneous distance between the two nearest atoms at a pressure of

P and the absolute temperature T , r(0, 0) is the instantaneous distance between the two

nearest atoms at zero pressure and zero temperature.

Use the results (3.7), (3.8) and (3.9), we obtain the pressure dependent expression of

keff :

keff
(
V (P )

)
= µω2

E

(
V (P )

)
. (3.10)

From expressions (3.7) - (3.10),We will get the DWF expression in XAFS of crystals as

a function of pressure at a specified temperature:

σ2(P, T ) = σ2
0

(
V (P )

)1 + z
(
V (P ), T

)
1− z

(
V (P ), T

) , (3.11)

σ2
0

(
V (P )

)
=

~ωE
(
V (P )

)
2keff

(
V (P )

) , (3.12)

z
(
V (P ), T

)
= exp

(−θE(V (P )
)

T

)
. (3.13)

From the 1st and 3rd cumulant expressions in section (2.8), we can write the pressure

dependent functions at a given temperature:

σ(1)(P, T ) = σ
(1)
0

(
V (P )

)1 + z
(
V (P ), T

)
1− z

(
V (P ), T

) , σ
(1)
0

(
V (P )

)
=

3c3α

c1
σ2

0

(
V (P )

)
, (3.14)

σ(3)(P, T ) = σ
(3)
0

(
V (P )

)3
(
σ2
(
V (P ), T

))2

− 2
(
σ2

0

(
V (P )

))2

(
σ2

0

(
V (P )

))2
, (3.15)

σ
(3)
0

(
V (P )

)
=

3c3α

c1

(
σ2

0

(
V (P )

))2

,

with σ
(1)
0

(
V (P )

)
, σ2

0

(
V (P )

)
and σ

(3)
0

(
V (P )

)
are the pressure dependence of the zero con-

tribution to the 1st, 2nd, and 3rd cumulants. These are described by the zero-point

contribution function of the 2nd cumulant σ2
0

(
V (P )

)
and c1, c2, c3 parameters.

3.2.2 The dependence on the doping ratio of the cumulants and the thermo-

dynamic parameters in the anharmonic XAFS spectra

The interaction between pairs of atoms in the Anharmonic-correlated Einstein model

is described by the effective interactive potential expression of the Morse anharmonic pair
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potential with the instantaneous deviation of x of the atoms known by the expression

(2.32).

Assume that the fusion of new atoms does not change the structure of the material,

denoted the index of the original atom as 1 and the substitution atom is 2, we rewrite the

relation (2.32) with the dissociation energy D instead D12 and parameters α replaced with

α12, would be:

UE(x) = D12

[
− 1 + α2

12x
2 − α3

12x
3 + ...

]
. (3.16)

For simplicity, the Morse potential parameters of the alloy are roughly determined using

the following mean expressions:

D12 =
C1D1 + C2D2

2
, (3.17)

α2
12 =

D1α
2
1 +D2α

2
2

D1 +D2
; α3

12 =
D1α

3
1 +D2α

3
2

D1 +D2
. (3.18)

With C1, C2 is the doping rate in a compound.

From expressions (2.31) and (3.17), (3.18) they will have an effective Einstein interac-

tion:

UE(x) = UE(a) +
1

2
keffy

2 + δUE(y). (3.19)

Use potential Morse parameters in expressions (3.17), (3.18) and perform calculations

for cubic crystal, we get keff and k3eff of the alloy:

keff = c1D12α
2
12, k3eff = −c3D12α

3
12. (3.20)

(1) The expression depends on the doping ratio of the cumulants

The analytical expressions of the cumulants depending on the temperature and the

doping rate for cubic crystals have the following form:

σ(1) =
3c3~ωE

2c21D12α12

(1 + z)

(1− z)
, (3.21)

σ2 =
~ωE

2c1D12α2
12

(1 + z)

(1− z)
, (3.22)

σ(3) =
c3~2ω2

E

4c31D
2
12α

3
12

(1 + 10z + z2)

(1− z)2
, (3.23)

with z = e−β~ωE is the temperature variable and is determined by the Einstein correlation

frequency:

ωE =

√
keff
µ12

, (3.24)
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and Einstein correlation temperature:

θE =
~ωE
kB

=
~
kB

√
keff
µ12

,⇒ z = exp

(
− ~
kBT

√
keff
µ12

)
(3.25)

Due to the reduce mass µ12 in the expression (3.25) is proportional to the atomic num-

ber of matter, so it depends on the doping ratio n, therefore the temperature variable z

depends on both the absolute temperature T and the doping ratio n, the resulting cumu-

lants are also dependent on the absolute temperature T and the doping ratio n.

For each alloy considered at a defined absolute temperature, for the n doping ratio of an

alloy ranging from 0% to 100% in expressions (3.21)-(3.23) and represented graphically, we

will have a line showing the dependence of the cumulants on the n doping ratio of matter

with a doped cubic structure. In addition, we can also examine the case that cumulants

are both temperature dependent and dependent on the doping ratio by (3.21), (3.22) and

(3.23).

(2) The expression depends on the doping ratio of the thermodynamic param-

eters

* Thermal expansion coefficient

The thermal expansion coefficient is dependent on the absolute temperature T and the

doping ratio n of a cubic crystal is written as:

αT,n =
3c3kB

c21D12α12r

z(ln z)2

(1− z)2
. (3.26)

Thermal expansion coefficient in (3.26) depends on z should follow the expression (??),

it also depends on absolute temperature T and n of materials.

* Anharmonic factor

Anharmonic factor β of the XAFS spectra for a doped system with a cubic structure:

β(n, T ) =
3c1c2η(T, n)kBT

32D12

[
1 +

c2c3kBT

4D12α12R

(
1 +

c2c3kBT

4D12αR

)]
, (3.27)

with:

η(T, n) =
2 exp(−θET )− exp(−θE)[

1− exp(−θE)
][

1 + exp(−θET )
] . (3.28)

Follow the expression (3.25), temperature correlation Einstein θE dependent µ12 there-

fore also depends on the doping rate n of crystals. From the expressions (3.27) and (3.28),

we can see the anharmonic factor of the XAFS spectra also depends on T and the doping

ratio n of materials.

* Phase shift of the XAFS spectra

Phase expression φA of the XAFS spectra depends on the temperature determined by

the expression (3.3), the cumulants are derived from equations (3.21), (3.22) and (3.23).

Because the cumulants depend on the doping ratio n, so φA of XAFS phase shift also

affected by the change of the doping ratio in the alloy namely:

φA(T, k, n) = 2k
[
σ(1)(T )− 2σ2

A(T )
(

1

R
− 1

λ(k)

)
− 2

3
σ(3)(T )k2

]
. (3.29)



Chapter 4

Calculation and discussion the results

4.1 Calculate the cumulants and thermodynamic parameters for the crys-
talline system with temperature and pressure dependent radial cubic
structure by ACDM

Applying the theory mentioned in section ( ref ACDM) for crystals with cubic structure

fcc radial, the thesis has specifically calculated with Au and Pt crystals to confirm the

suitability of the theory. Have presented with the results obtained by experiment and

other theories.

According to the ACDM, the anharmonic effective potential has a form

Ueff (x) = U(x) + 2U
(x

2

)
+ 8U

(
− x

4

)
+ 8U

(x
4

)
(4.1)

With Au crystal, the interactions between the atoms are hypothesized that can be

described by the semi-experimental multi-particle interaction potential similar to the tight

bonding model in the second order moment approximation;

U(r) = UB(r) + UR(r) (4.2)

in the above expression;

UB(r) = −
√
ξe
−2q
[

(r/r0)−1
]

(4.3)

UR(r) = Ae
−p
[

(r/r0−1)
]
. (4.4)

From the expression of the effective potential potential, we can determine

ωD = 2

√
keff
M

; θD =
~ωD
kB

(4.5)

The cumulants in ACDM has form;

σ(1) =
3~ak3

2πk2
eff

∫ π/a

0

ω(q)
1 + Z(q)

1− Z(q)
dq (4.6)

σ2 = − ~a
2πkeff

∫ π/a

0

ω(q)
1 + Z(q)

1− Z(q)
dq (4.7)

16
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σ(3) =
3~a2k3

4π2k3
eff

∫ π/a

0

dq1

∫ π/a−q1

−π/a
F (q1, q2)dq2

σ(4) =
9~3a3k4

4π3k4
eff

∫ π/a

0

dq1

∫ π/a−(q1+q2)

−π/a
G(q1, q2, q3)dq3

The TB-SMA potential parameters determine the firt - principles calculations for gold

bulk material are respectively ξ = 1.8241eV , A = 0.2145eV ,q = 4.3769, p = 108842

và r0 = 28652Å. Using these parameters, we derve the three force constants as follows

keff = 3.06eV/Å2, k3 = −1.58eV/Å3 and k4 = 1.49eV /Å4.

The thesis also considered the calculation of thermodynamic parameters for Pt crystals

under the influence of pressure.

Using the dissertation’s data to draw graphs to compare other theories and experimental

values:

Figure 4.1: Anharmonic effective potential of gold

4.2 Calculate the cumulants and thermodynamic parameters for

crystals with a cubic structure dependent on temperature

and doping rate by ACEM, error and comparison.

4.2.1 Graph representing the thermodynamic parameters and parameters

Applying the expressions presented in section ref pt, we can calculate and plot the

thermodynamic parameters of Cu-Ag doped crystal to evaluate the validity of the theory.
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Figure 4.2: The temperature dependence of the first cumulant of gold. The solid line (—) is the thesis

theory and experimental values of Newville

- The firt cumulant

σ(1) =
3~

40D12α12

√
keff
µ12

(
1 + exp

(
− ~

kBT

(√keff
µ12

))
(
1− exp

(
− ~

kBT

(√keff
µ12

) (4.8)

- The second cumulant

σ(2) =
~

10D12α12

√
keff
µ12

(
1 + exp

(
− ~

kBT

(√keff
µ12

))
(
1− exp

(
− ~

kBT

(√keff
µ12

)) (4.9)

- The third cumulant

σ(3) =
3~2 keff

µ12

200D2
12α

3
12

(
1 + 10exp

(
− ~

kBT

(√keff
µ12

)
+ exp

(
− ~

kBT

(√keff
µ12

)
(
1− exp

(
− ~

kBT

(√keff
µ12

))2
(4.10)

With patameters D12 = 0.03376(eV ), α12 = 1.3638(Å)−1, keff = 3.31397(eV A−2),

k3eff = 1.0705(eV A−3), ~ = 6.5822 × 1016(eV.s),kB = 8.617 × 105(eV A−1), and µ12 =

108− 44.5n. With the above parameters, we plot the graphs representing the thermo-

dynamic parameters of Cu-Ag crystals.

4.3 Error and comparison

To evaluate the validity of the theory that the thesis gives, we have calculated and

compared the values of coefficients thermodynamic parameters of some crystals through
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Figure 4.3: The temperature dependence of the second cumulant of gold compared with experimental

values of Newville

Figure 4.4: Temperature dependence of cumulant rato σ(1).σ(2)/σ(3) of gold
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Figure 4.5: Dependence of cumulant ondoping ratio (DR)

Figure 4.6: Dependence of therma expansion coefficient on temperature and DR of Cu-Ag.
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Figure 4.7: Dependence of anharmonic factor on temperature and DR of Cu-Ag.

the value table.

The thesis has calculated the relative error through the thermodynamic quantities ac-

cording to the structural coefficients compared with the experimental values, for example

the coefficient c1 according to the formula:

∆c =
|ccalc. − cexpt.|

ccalc.
,

”calc.” is the coefficient c calculate from our theory and ”expt” is the measurement from

the experiment.The results obtained according to the above formula are listed in Table

(4.1).(θE) of Cu, (σ2) of, or the third cumualnt (σ(3)) of Cu, therma expansion coefficient

(αT ) of W are the values measured from the experiment. The results obtained describe

the high precision of the method of determining thermodynamic parameters through struc-

tural coefficients In particular the relative error of the quantities calculated by theoretical

structural coefficients with measurements for fcc crystals just 1.2% for θE , with ωD of

Al it just2.5%,... The calculated data with very small error compared to the experiment

confirmed that the use of ACEM in XAFS theory is appropriate.



22

Form fcc bcc Cu(θE) Cu(σ(3)) Al (σ2) W(αT )

T 0K 600 295 2.000

experimental 237K 0.00013 0.0287 6.4×

measu- 10−5K−1

rements

c1 5 3.667 5.036 5.018 3.6287 3.632

∆c 0.012 0.006 0.025 0.01

Table 4.1: Table of examples of relative error of structure parameters c1

Form Type D12(eV ) D12(eV ) α12 α12

(LT) (TN) (LT) (TN)

Cu Cu-Cu 0.354 0.3429 1.3590 1.3588)

Ag Ag-Ag 0.3253 0.3323 1.3667 1.3690

Al Al-Al 0.2709 0.2703 1.1874 1.1646

Ni Ni-Ni 0.4314 0.4205 1.1584 1.1502

Table 4.2: Morse potential parameters calculated according to theory (LT) and experimental

data (TN)

Form Type keff (eV A−2) keff (eV A−2) ωE θE(K) θE(K)

(LT) (TN) (1013Hz) (LT) (TN)

Cu Cu-Cu 3.1655 3.4931 3.0889 236 232

Ag Ag - Ag 3.1139 2.9797 3.3933 176 167)

CuAg Cu-Ag 3.1423 - 2.6874 207 -

Table 4.3: The values of the parameters of anharmonic effective, Einstein frequency and

Einstein temperature



CONCLUSION

The thesis directly contributes to solving an important and topical problem of modern

XAFS theory, namely:

1. The dissertation has built up general analytical expressions of thermodynamic pa-

rameters through structural coefficients with anharmonized contributions. The expressions

obtained contain classical results at the high temperature limit and contain the zero energy

contribution, a quantum effect at low temperatures. The coefficient of thermal expansion

has the form of isothermal capacity heat, so it satisfies the basic theory of thermal expan-

sion.

2. The thesis has built up the effective interaction potential representing the relationship

between the pair interaction potential and the effective interaction potential of the system

and the contribution of neighboring atoms. It is possible to provide structural coefficients

through which it is possible to simplify the memorization of thermodynamic expressions

and cumulants, and to infer the structure of materials knowing these coefficients.

3. The thesis has expanded the research to calculate the thermodynamic parameters

and cumulants for the system with doped cubic structure. Describe the dependence of the

thermodynamic parameters and the cumulants on the doping rate of the material. The

discovery of structural anomalies for CuAg50 alloy opens up a new research direction for

graduate students of this material.

4. The thesis has studied the dependence of thermodynamic parameters on temperature

and the influence of pressure according to the Debye model with effective anharmonized

correlation in the non-regulated XAFS spectrum. As pressure increases, the mean squared

displacement, a characteristic quantity of the Debye-Waller coefficient decreases, resulting

in a decrease in the thermodynamic parameters as well as the amplitude of the XAFS

spectrum. This phenomenon has not been fully explained, hoping to open a new research

direction on the influence of pressure on thermodynamic parameters.

5. The good agreement between the numerical results of the thesis and the experimental

values confirmed the advantages and feasibility of the theory that the thesis considers.
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