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INTRODUCTION

1. Motivation and history of the problem

Consider the evolution equation:

∂u

∂t
− γ

∂

∂t
∆u−∆u = f. (1)

The equation (1) is the model of many real-life problems. We can call it the pseudo-parabolic equation, the

nonclassical diffusion equation, the Sobolev type evolution equation, ... This equation can be the mathematical

model of physics problems, for example, it was used to describe and study second-order fluids (see Coleman

(1960)). This equation is the energy equation in the theory of heat conduction involving two temperatures (see

Chen (1968)) and describe the dispersion of long waves (see Benjamin (1972)).

In (1), if ∂
∂t∆u is replaced by ∂t,α∆u, we have:

∂u

∂t
− γ∂t,α∆u−∆u = f, (2)

where ∂t,α is the Riemann-Liouville fractional derivative:

∂t,αv(t) =
d

dt

∫ t

0

1

(t− ζ)αΓ(1− α)
v(ζ)dζ, α ∈ (0, 1),

then (2) is called the Rayleigh-Stokes equation. In recent years, many problems related to Rayleigh-Stokes

equation have received considerable attention, since the Rayleigh-Stokes equation plays an important role in

describing the behavior of some non-Newtonian fluids. The fractional derivative ∂t,α is used to capture the

viscoelastic behavior of the flow (see Bazhlekova (2015), Fetecau (2009)).

In general, if k ∈ L1
loc (R+) is nonnegative we have the generalized Rayleigh-Stokes equation:

∂u

∂t
−Dt,{k}∆u−∆u = f, (3)

where Dt,{k} is the nonlocal differential operator of Riemann-Liouville type defined by:

Dt,{k}u (t) =
d

dt

∫ t

0

k (t− ζ)u (ζ) dζ,

here k is the kernel function. The equation (3) is generalization for many problems considered in literature. In

the case k is a constant, (3) is a classical diffusion equation. If k is a regular function, e.g. k ∈ C1(R+) then our

equation reads
∂u

∂t
− a∆u−

∫ t

0

b(t− ζ)∆u(ζ)dζ = f,

with a = 1+m(0) and b(t) = m′(t), which is a nonclassical diffusion equation. Clearly, if k(t) = γt−α

Γ(1−α) then we

obtain the equation (2).

For the linear Rayleigh-Stokes equation, the study of exact solution can be found in the paper Fetecau (2009),

in this paper the authors consider the viscoelastic fluid to be modelled as a generalized Oldroyd-B fluid. The
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exact solution for the velocity field, obtained by means of the Laplace and double Fourier sine transforms, is

presented under integral and series form in terms of the generalized G-functions. Other results related to exact

solutions for Rayleigh-Stokes problems can be found in Shen (2006), Zierep (2007), Xue (2009) and Khan (2009).

The exact solutions for Rayleigh-Stokes problems involving infinite series and special functions, and thus

are inconvenient for numerical evaluation. Hence, it is imperative to develop efficient and optimally accurate

numerical algorithms for Rayleigh-Stokes problems. In the paper Bazhlekova (2015), the mathematical model is

given by:

∂u

∂t
−∆u− γ∂t,α∆u = f in Σ ⊂ Rd, 0 < t ≤ T ;

u = 0 on ∂Σ, 0 < t ≤ T ;

u(·, 0) = v in Σ,

where Σ ⊂ Rd is a convex polyhedral domain, γ > 0 is a constant, v is the initial data, ∂α
t is the Riemann-Liouville

fractional derivative of order α ∈ (0, 1). In this paper, for the case f ≡ 0, the solution is represented by the

resolvent operator S(t) and the regularity of the solution is studied. In addition, the authors develop a space

semidiscrete Galerkin scheme using continuous piecewise linear finite elements, and derive optimal with respect to

initial data regularity error estimates for the finite element approximations. Further, two fully discrete schemes

based on the backward Euler method and second-order backward difference method and the related convolution

quadrature are developed, and optimal error estimates are derived for the fully discrete approximations for both

smooth and nonsmooth initial data. Numerical results for one-dimensional and two-dimensional examples with

smooth and nonsmooth initial data are presented to illustrate the efficiency of the method, and to verify the

convergence theory. For other results on numerical schemes for Rayleigh-Stokes problems, see Bi (2018), Chen

(2013), Chen (2008), Salehi (2018), Zaky (2018).

For the initial data problem for nonlinear Rayleigh-Stokes equation, the existence, stability and regularity of

mild solution can be found in Lan (2022), in the following model:

∂u

∂t
−∆u− γ∂t,α∆u = f (u) in Σ, t > 0,

u = 0 on ∂Σ, t ≥ 0,

u (0) = ξ in Σ,

where 0 < α < 1, Σ ⊂ Rd. In this paper, the author had proved the existence of mild solution. For the regularity,

with suitable conditions, the mild solution is a strong one. In addition, the asymptotic stability of solution and

the convergence to equilibrium point are studied. Finally, the limiting case α = 1 is considered, in this case

the resolvent operator has no smoothing effect. The qualitative results about mild solution to the initial data

problem for nonlinear Rayleigh-Stokes equation can be found in Zhou (2021) and Luc (2021). The initial data

problem for generalized Rayleigh-Stokes equation is presented in Ke (2022):

∂u

∂t
+

∂

∂t
(k ∗ (−∆)σu)−∆u = f(u) in Σ, t > 0,

u = 0 on ∂Σ, t ≥ 0,

u(·, 0) = ξ in Σ,

where (k ∗ v)(t) =
∫ t

0

k(t− ζ)v(ζ)dζ, (−∆)σ denotes the fractional power of the Laplacian, σ ∈ [0, 1], ξ ∈ L2(Σ).

When σ = 1 and k(t) =
m0t

−α

Γ(1− α)
,m0 > 0, 0 < α < 1, we obtain the Rayleigh-Stokes equation. The authors’s

aim is to analyze some sufficient conditions ensuring the global solvability, regularity and stability of solution.

In particular, they study the existence of mild solution, and thanks to suitable conditions the mild solution can

become strong solution. Moreover, they prove some stability results such as the dissipativity, the asymptotic

stability and the convergence to equilibrium.
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In the theory of nonlocal partial differential equation, inverse problem received considerable attention. When

consider the inverse problem for Rayleigh-Stokes equation, we want to study the identification problem and the

final value problem. In the identification problem, the source term is not fully obtained from observation, and

a nonlinear perturbation may involve. Therefore we need a measurement at final time. In the case of linear

Rayleigh-Stokes equation, the paper Triet (2018) has the following model:

∂u

∂t
−∆u− γ∂t,α∆u = F (x, t), (x, t) ∈ Σ× (0, T ),

u(x, t) = 0, x ∈ ∂Σ,

u(x, 0) = u0(x), x ∈ Σ,

where F (x, t) is unknown, therefore we need observation data involving “noise”. In this paper, to regularize

the unstable solution, the authors apply a general filter method for constructing regularized solution, and the

convergence rate of this method also has been investigated.

In the final value problem, the observation of initial state is unavailable, and we make use of the observation

at present time to detect the previous states of the system. The final value problem for (2) can be found in Luc

(2019):

∂u

∂t
−∆u− γ∂t,α∆u = F (x, t) , (x, t) ∈ Σ× (0, T ) ,

u (x, t) = 0, x ∈ ∂Σ,

u (x, T ) = f (x) , x ∈ Σ,

where Σ ⊂ Rd. The main results of this paper are finding the representation of solution to the final value problem

and showing that this solution is Hölder regular. Other results when the right-hand side of the Rayleigh-Stokes

equation contains the state function u (for example G(x, t, u)) can be found in Ngoc (2021), Tuan (2019).

The first problem we propose is about finding the suitable conditions such that the mild solution exists and

analyzing the stability, the regularity of the mild solution with respect to the nonlinear equation (2).

Precisely, we consider the model in Lan (2022) in the case the nonlinear function in the right-hand side

contains a delayed term. We have:

∂u

∂t
−∆u− γ∂t,α∆u = f(t, uθ) in Σ ⊂ Rd, t > 0,

u = 0 on ∂Σ, t ≥ 0,

u(x, ζ) = ϕ(x, ζ), x ∈ Σ, ζ ∈ [−τ, 0],

where γ > 0, α ∈ (0, 1). In this model, uθ is given by uθ(x, t) = u(x, t−θ(t)), here θ is continuous on (0,+∞) and

satisfies that −τ ≤ t− θ(t) ≤ t and t− θ(t) → +∞ as t → +∞, f : (0,+∞)×L2(Σ) → L2(Σ) is a nonlinear map

and ϕ ∈ C([−τ, 0];L2(Σ)) is given. The nonlinearity f contains a delayed term and represents the external force,

which depends on the history state of the system. For example, θ(t) = (1− a)t+ τ, then uθ(x, t) = u(x, at− τ)
with a ∈ (0, 1], which is a proportional delay.

In partial differential equation, it is natural to consider the delayed terms when we want to describe real-life

processes. According to our knowledge, there was no result on the stability with respect to the equation (2)

involving delays, which has been pulished. Therefore, we want to study the solvability and stability of this

problem. Precisely, our aims are

• analyzing the existence of mild solution when f has a superlinear growth or sublinear growth.

• analyzing the dissipativity of the system and the asymptotic stability of zero solution.

• analyzing the existence of a compact set of decay solutions.
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For the equation (3), our researches focus on the identification problem and the final value problem.

If the right-hand side of (3) is replaced by a(x)b(t)+g(u), where g(u) is a nonlinear perturbation and a(x)b(t)

is an external force written as separation of variables, in that the term a(x) is unknown then we have the following

identification problem:

∂u

∂t
−∆u−Dt,{k}∆u = a(x)b(t) + g(u) in Σ, t ∈ (0, T ),

u = 0 on ∂Σ, t ≥ 0,

u(0) = ϕ in Σ,

u(T ) = ξ(u) in Σ,

where u(t) takes values in L2(Σ), b, g, ξ and ϕ are given functions.

This problem is in the situation that the source term a(x)b(t) containing a(x), which is not obtained from

observations. In addition, a nonlinear perturbation g may involve. In order to identify a, we need a measurement

at final time, e.g. u(T ) = ξ(u), in this case the measured data is possibly implicit. According to our knowl-

edge, there was no result on identifying the source term for the Rayleigh-Stokes problem involving superlinear

perturbations which has been published. For this problem, we want to

• find the conditions such that the mild solution exists and study the stability of this solution.

• find the conditions such that the mild solution becomes a strong solution.

The problem of identifying source term is carried out in the case that a nonlinear perturbation involves and the

final measurement is implicit. This is a practical situation which results in significant difficulties for our analysis.

The final value problem for (3) has the form

∂u

∂t
−∆u−Dt,{k}∆u = g(u) in Σ, t ∈ (0, T ),

u = 0 on ∂Σ, t > 0,

u(T, ·) = ξ in Σ,

where u is the unkown function defined on (0, T ]×Σ, g is a given function. The final value condition u(T, ·) = ξ
is usually imposed when the observation of initial state is unavailable.

The final value problem was considered for nonlinear Rayleigh-Stokes equation in Ngoc (2021), Tuan (2019),

where g = g(u) and takes values in L2(Σ). Nevertheless, this setting does not allow g(u) to admit a polynomial

form, such as g(u) = |u|q with q > 1, and it is not likely for g to contain a gradient term. We deal with this issue

by assuming that g(u) belongs to H−θ with θ > 0 (the spaces Hϱ, ϱ ∈ R are Hilbert scales). In this work, we

aim at

• finding reasonable conditions on g and all parameters involved for ensuring the solvability of the problem.

• finding reasonable conditions such that the obtained solution is Hölder continuous with respect to the time

variable.

From the technical point of view, since g(u) takes values in dual spaces, one has no direct estimates for the Hölder

continuity of solutions.

In conclusion, we have studied and completed the thesis: “Stability and regularity analysis for semilinear

Rayleigh-Stokes type equations”.
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2. Purpose, objects and scope of the thesis

2.1. Purpose

In the thesis, we study the mild solution to forward and inverse problem for (2) and (3), respectively. More

specifically, we study the existence of mild solution and its qualitative properties.

2.2. Objects

Problem proposed for Rayleigh-Stokes equation and generalized Rayleigh-Stokes equation.

2.3. Scope

The scope of the thesis includes:

- The existence and the stability of mild solution to the Cauchy problem for Rayleigh-Stokes equation involving

delays.

- The solvability, stability and regularity of mild solution to the identification problem for the generalized Rayleigh-

Stokes equation with a measurement at final time.

- The existence and uniqueness, and the Hölder continuity with respect to the time variable of mild solution to

the final value problem for the generalized Rayleigh-Stokes equation.

3. Research methods

In this thesis, we employ the theory of completely positive functions, the theory of resolvents, Grönwall and

Halanay type inequalities, Hilbert scales, fractional Sobolev spaces, fixed-point theorems.

4. Structure of thesis

The main content of the thesis is divided into 4 chapters:

- Chapter 1: Preliminaries.

- Chapter 2: The Cauchy problem for Rayleigh-Stokes equation involving delays.

- Chapter 3: An identification problem for generalized Rayleigh-Stokes equation involving superlinear pertubations.

- Chapter 4: Final value problem for generalized Rayleigh-Stokes type equations involving weak-valued nonlinear-

ities.

5. Thesis significance

The contribution of the thesis is the new results on the solvability, stability and regularity of mild solution

in nonlocal partial differential equations in general, and the nonlinear Rayleigh-Stokes equation in particular.

The main results of the thesis have been published in 03 prestige international journals (we list in the section

“Author’s works related to the thesis that have been published”). Results of the thesis have been reported at:

1) Seminar of Department of Analysis, Faculty of Mathematics, Hanoi Pedagogical University 2;

2) 10th Vietnam Mathematical Congress, 2023.
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Chapter 1

PRELIMINARIES

1.1. Function spaces

In this section, we recall the notions of Laplace operators, spectrum of Laplace operators, fractional Laplace

operators, Hilbert scales and fractional Sobolev spaces.

1.2. Laplace transform and fractional calculus

In this section, we recall the concepts and properties related to Laplace transform, Laplace inverse transform,

Laplace transform of convolution. In addition, we present the concept of fractional integral and fractional

derivative, the formula for the Laplace transform of a fractional derivative of order α.

1.3. The resolvent function and the resolvent operator

This section is devoted to present the theory of completely positive functions, the theory of resolvent functions

and resolvent operators, and the representation for solutions given by resolvent operators.

In order to find the representation for solution for the inverse problem, we first find the solution representation

for the initial data problem. We consider the following relaxation problem:

r′(t) + λr(t) + λDt,{k}r(t) = 0, t > 0, (1.1)

r(0) = 1, (1.2)

where the unknown r is a scalar function, λ > 0.

We find a representation for solution of the linear initial value problem:

∂u

∂t
−∆u−Dt,{k}∆u = V in Σ, when t ∈ (0, T ], (1.3)

u = 0 on ∂Σ, when t ∈ [0, T ], (1.4)

u(0) = ϕ in Σ, (1.5)

where V ∈ C([0, T ];L2(Σ)).

Let {ei}+∞
i=1 be an orthonormal basis of L2(Σ) consisting of eigenfunctions of −∆ subject to the homogeneous

boundary condition, i.e.,

−∆ei = λiei in Σ, ei = 0 on ∂Σ,

where one can assume that 0 < λ1 ≤ λ2 ≤ . . . , λi → +∞ as i → +∞.

6



Then we get

u(t) =

+∞∑
i=1

ui(t)ei, V (t) =

+∞∑
i=1

Vi(t)ei.

From (1.3) we have

u′
i(t) + λi

(
1 +Dt,{k}

)
ui(t) = Vi(t),

ui(0) = ϕi := ⟨ϕ, ei⟩.

This implies

u(t) = R(t)ϕ+

∫ t

0

R(t− ζ)V (ζ)dζ, (1.6)

where R(t) defined by

R(t)ϕ =

+∞∑
i=1

r(t, λi)ϕiei, ϕ ∈ L2(Σ). (1.7)

We call r(t, λ) the resolvent function, and R(t) the resolvent operator.

1.4. Fixed-point theorem

In this section, we recall the Banach fixed-point theorem, the Schauder fixed-point theorem, and the fixed-point

theorem for condensing map.
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Chapter 2

THE CAUCHY PROBLEM FOR

RAYLEIGH-STOKES EQUATION

INVOLVING DELAYS

Our aim in this chapter is to analyze some circumstances, in those the global solvability, and asymptotic behavior

of solutions are addressed. By establishing a Halanay type inequality, we show the dissipativity and asymptotic

stability of solutions to our problem. In addition, we prove the existence of a compact set of decay solutions by

using local estimates and fixed-point arguments. The content of this chapter is based on the paper [1] in the

author’s works related to the thesis that have been published.

2.1. Problem setting

Let Σ ⊂ Rd be a bounded domain with smooth boundary ∂Σ. Consider the problem:

∂u

∂t
−∆u− γ∂t,α∆u = f(t, uθ) in Σ when t > 0, (2.1)

u = 0 on ∂Σ when t ≥ 0, (2.2)

u(x, ζ) = ϕ(x, ζ) when x ∈ Σ, ζ ∈ [−τ, 0], (2.3)

where 0 < α < 1, γ > 0, ∂t,α stands for the Riemann-Liouville derivative of order α, given by ∂t,αv(t) =

d
dt

∫ t

0

1

(t− ζ)αΓ(1− α)
v(ζ)dζ, for t > 0; f : (0,+∞)×L2(Σ) → L2(Σ) is a nonlinear map and ϕ ∈ C([−τ, 0];L2(Σ))

is given.

The delayed term uθ is defined by uθ(x, t) = u(x, t−θ(t)) with θ being a continuous function on (0,+∞) such

that −τ ≤ t− θ(t) ≤ t ∀t ∈ (0,+∞), and t− θ(t) → +∞ as t → +∞.

2.2. Solution formula

In (1.1) and (1.3), when k(t) = γt−α

Γ(1−α) we obtain the respective r(t, λ) and R(t). Properties of R(t) are given in

the following lemma.

Lemma 2.1. For any T > 0, ∀ν ∈ L2(Σ) we have:

(a) R(·)ν ∈ C([0, T ];L2(Σ)) and R(·)ν ∈ C((0, T ];H2(Σ) ∩ H1
0(Σ)).

(b) ∥R(t)ν∥ ≤ r(t, λ1)∥ν∥ and ∥R(t)∥ ≤ 1 for all t ≥ 0.
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(c) R(·)ν ∈ C(n)((0, T ];L2(Σ)) for all n ∈ Z, n ≥ 0, and ∥R(n)(t)ν∥ ≤ C
tn ∥ν∥, where C > 0 is a constant.

(d) ∥∆R(n)(t)ν∥ ≤ C
tn+1−α ∥ν∥ for all t > 0 and n ∈ Z, n ≥ 0.

The next lemma is about the Halanay type inequality, which we use to study the stability of the mild solution:

Lemma 2.2. Let ν be continuous and nonnegative function satisfying

ν(t) ≤ r(t, λ)ν0 +

∫ t

0

r(t− ζ, λ)[d1 sup
η∈[ζ−θ(ζ),ζ]

ν(η) + d2(ζ)]dζ when t > 0, (2.4)

and

ν(ζ) = ψ(ζ) with ζ ∈ [−τ, 0], (2.5)

where 0 < d1 < λ, ψ ∈ C([−τ, 0];R+) and d2 ∈ L1
loc(R+) is a nondecreasing function. Then

ν(t) ≤ λ

λ− d1

[
ν0 +

∫ t

0

r(t− ζ, λ)d2(ζ)dζ
]
+ sup

ζ∈[−τ,0]

ψ(ζ) for all t > 0. (2.6)

In addition, if r(·, λ) ∗ d2 is bounded on (0,+∞) then

lim sup
t→+∞

ν(t) ≤ sup
(0,+∞)

∫ t

0

r(t− ζ, λ)d2(ζ)dζ. (2.7)

In particular, if d2 = 0 then ν(t) → 0 as t → +∞.

2.3. Solvability and stability

We give the definition of the mild solution as follows:

Definition 2.1. Let ϕ ∈ C([−τ, 0];L2(Σ)) be given. A function u ∈ C([−τ, T ];L2(Σ)) is said to be a mild solution

to (2.1)-(2.3) on [−τ, T ] iff u(·, ζ) = ϕ(·, ζ) for ζ ∈ [−τ, 0] and u(·, t) = R(t)ϕ(·, 0)+
∫ t

0
R(t−ζ)f(ζ, uθ(·, ζ))dζ, t ∈

[0, T ].

The solvability of (2.1)-(2.3) will be show in the next theorems.

Theorem 2.1. Let f : [0, T ]× L2(Σ) → L2(Σ) be a continuous mapping such that

(G1) ∥f(t,ν)∥ ≤ ℓ(t)O(∥ν∥) for 0 ≤ t ≤ T and ν ∈ L2(Σ), where ℓ ∈ L1(0, T ) is a nonnegative function and O
is a continuous and nonnegative function obeying that lim sups→0

O(s)
s · sup0≤t≤T

∫ t

0
r(t− ζ, λ1)ℓ(ζ)dζ < 1.

Then there exists δ > 0 such that the problem (2.1)-(2.3) has at least one mild solution on [−τ, T ], provided that

∥ϕ∥∞ ≤ δ.

Theorem 2.2. Let f : [0, T ]× L2(Σ) → L2(Σ) be a continuous mapping such that

(G2) ∥f(t,ν)∥ ≤ ℓ(t)(1 + ∥ν∥) for 0 ≤ t ≤ T and ν ∈ L2(Σ), where ℓ ∈ L1(0, T ) is a nonnegative function.

Then the problem (2.1)-(2.3) has at least one mild solution on [−τ, T ].

Theorem 2.3. Let f : [0, T ]× L2(Σ) → L2(Σ) be a continuous mapping such that

(G3) f(·, 0) = 0 and ∥f(t,ν1) − f(t,ν2)∥ ≤ ℓ(t)K(s)∥ν1 − ν2∥ for 0 ≤ t ≤ T and ν1,ν2 ∈ L2(Σ) such that

∥ν1∥, ∥ν2∥ ≤ s, where ℓ ∈ L1(0, T ) is a nonnegative function and K is a continuous function obeying that

lim sup
s→0

K(s) · sup
0≤t≤T

∫ t

0

r(t− ζ, λ1)ℓ(ζ)dζ < 1.
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Then there exists δ > 0 such that the problem (2.1)-(2.3) has a unique mild solution on [−τ, T ], provided that

∥ϕ∥∞ ≤ δ.

We are now in a position to show the dissipativity of our system.

Theorem 2.4. For all T > 0, assume that all the hypotheses of Theorem 2.2 hold. Assume that ∥ℓ∥ess sup :=

ess supt≥0ℓ(t) < λ1. Then there exists a bounded absorbing set for solution of (2.1)-(2.3), with arbitrary initial

data.

The next theorem shows the asymptotic stability of zero solution to (2.1)-(2.2).

Theorem 2.5. Let f : R+ × L2(Σ) → L2(Σ) be a continuous mapping such that:

(G4) f(·, 0) = 0 and ∥f(t,ν1) − f(t,ν2)∥ ≤ ℓ(t)K(s)∥ν1 − ν2∥ for 0 < t < +∞ and ν1,ν2 ∈ L2(Σ) such that

∥ν1∥, ∥ν2∥ ≤ s, where ℓ ∈ L∞(R+) is a nonnegative function and K is a continuous function satisfying that

∥ℓ∥ess sup · lim sup
s→0

K(s) < λ1.

Then the zero solution of (2.1)-(2.2) is asymptotically stable.

2.4. Existence of decay solutions

Assume that

(G5) f : (0,+∞)× L2(Σ) → L2(Σ) is a continuous mapping such that

∥f(t,ν)∥ ≤ ℓ(t)O(∥ν∥), ∀t ∈ (0,+∞),ν ∈ L2(Σ),

where ℓ ∈ L1
loc(R+) is a nonnegative function and O ∈ C(R+) is a nonnegative and nondecreasing function

such that

lim sup
s→0

O(s)

s
· sup
t≥0

∫ t

0

r(t− ζ, λ1)ℓ(ζ)dζ < 1, (2.8)

and

lim
T→+∞

sup
t≥T

∫ t
2

0

r(t− ζ, λ1)ℓ(ζ)dζ = 0. (2.9)

The next theorem represents the main result of this section.

Theorem 2.6. Let (G5) hold. Then there exists δ > 0 such that the problem (2.1)-(2.3) has a compact set of

decay solutions, provided that ∥ϕ∥∞ ≤ δ.

2.5. Examples for (2.8) and (2.9)

Firstly, we consider (2.9). Let ℓ ∈ L∞(R+) and ∥ℓ∥ess sup = ess supt≥0|ℓ(t)|. Then (2.9) holds. Indeed, we can

see that

sup
t≥T

∫ t
2

0

r(t− ζ, λ1)ℓ(ζ)dζ ≤ ∥ℓ∥ess sup sup
t≥T

∫ t
2

0

r(t− ζ, λ1)dζ

≤ ∥ℓ∥ess sup sup
t≥T

∫ t

t
2

r(ζ, λ1)dζ

≤ ∥ℓ∥ess sup

∫ +∞

T
2

r(ζ, λ1)dζ→ 0 as T → +∞,
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thanks to r(·, λ1) ∈ L1(R+).

Secondly, we consider (2.8). If f has superlinear growth, for example O(s) = sp with p > 1, then (2.8) holds.

If f has a sublinear growth, for example O(s) = s, then (2.8) becomes

sup
t≥0

∫ t

0

r(t− ζ, λ1)ℓ(ζ)dζ < 1. (2.10)

Noting that ∫ t

0

r(t− ζ, λ1)ℓ(ζ)dζ ≤ ∥ℓ∥ess sup

∫ t

0

r(ζ, λ1)dζ ≤ ∥ℓ∥ess supλ
−1
1 ,

we get that (2.10) is fulfilled, provided that ∥ℓ∥ess sup < λ1.
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Chapter 3

AN IDENTIFICATION PROBLEM

FOR GENERALIZED

RAYLEIGH-STOKES EQUATIONS

INVOLVING SUPERLINEAR

PERTUBATIONS

In this chapter, we prove the unique solvability and stability of solution. Furthermore, we show that the obtained

solution is differentiable and it is a strong one. The content of this chapter is based on the paper [2] in the

author’s works related to the thesis that have been published.

3.1. Problem setting

Let Σ be a bounded domain in Rd with smooth boundary ∂Σ. Consider the following problem: find (a, u)

satisfying that

∂u

∂t
−∆u−Dt,{k}∆u = a(x)b(t) + g(u) in Σ when t ∈ (0, T ), (3.1)

u = 0 on ∂Σ when t ≥ 0, (3.2)

u(0) = ϕ in Σ, (3.3)

u(T ) = ξ(u) in Σ, (3.4)

where u(·) takes values in L2(Σ), b, g and ξ are given functions, Dt,{k} stands for the nonlocal differential operator

of Riemann-Liouville type defined by

Dt,{k}ν(t) =
d

dt

∫ t

0

k(t− ζ)ν(ζ)dζ,

with respect to the kernel function k ∈ L1
loc(R+). In this problem, we need the following conditions:

(M) k ∈ L1
loc(R+) is nonnegative and a(t) = 1 + k(t) is completely positive.

(NND) There exists a positive nonincreasing function m ∈ L1
loc(R+) such that

m ∗ a = 1 on R+.
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3.2. Estimations for resolvent operator and representation of the mild

solution

We consider the resolvent operator R(t) as in (1.7). The following lemma give us the properties of R(t):

Lemma 3.1. Let {R(t)}t≥0 be the resolvent operator defined by (1.7), ν ∈ L2(Σ) and T > 0. Then

(a) R(·)ν ∈ C([0, T ];L2(Σ)) and ∥R(t)∥ ≤ r(t, λ1) ∀t ≥ 0.

(b) ∆R(·)ν ∈ C((0, T ];L2(Σ)), ∆R(·)ν ∈ L1(0, T ;L2(Σ)) and ∥∆R(t)∥ ≤ t−1 for all t > 0. Moreover,

∥
∫ t

0

∆R(ζ)νdζ∥ ≤ ∥ν∥ ∀t ≥ 0. (3.5)

(c) If k is nonincreasing then R(·)ν ∈ C1((0, T ];L2(Σ)) and it holds that

∥R′(t)∥ ≤ t−1 ∀t > 0. (3.6)

(d) If h ∈ C([0, T ];L2(Σ)) then (−∆)
1
2R ∗ h ∈ C([0, T ];L2(Σ)) and it holds that

∥(−∆)
1
2R ∗ h(t)∥ ≤

(∫ t

0

r(t− ζ, λ1)∥h(ζ)∥2dζ
) 1

2

, ∀t ≥ 0.

From the formula (1.6) with respect to (1.3)-(1.5), we formulate a representation of solution to (3.1)-(3.4).

Let u be a solution to (3.1)-(3.4). Put ξi = ⟨ξ(u), ei⟩, gi(t) = ⟨g(u(t)), ei⟩ (the scalar product on L2(Σ)), and

ai = ⟨a, ei⟩H−1,H1 (the duality pairing ⟨·, ·⟩H−ϱ,Hϱ on H−ϱ ×Hϱ), then

u(t) =

+∞∑
i=1

[
r(t, λi)ϕi +

∫ t

0

r(t− ζ, λi)aib(ζ)dζ+
∫ t

0

r(t− ζ, λi)gi(ζ)dζ
]
ei.

It follows that

ξi = r(T, λi)ϕi +

∫ T

0

r(T − ζ, λi)aib(ζ)dζ+
∫ T

0

r(T − ζ, λi)gi(ζ)dζ.

So

ai =

(∫ T

0

r(T − ζ, λi)b(ζ)dζ

)−1 [
ξi − r(T, λi)ϕi −

∫ T

0

r(T − ζ, λi)gi(ζ)dζ
]
,

provided that
(∫ T

0
r(T − ζ, λi)b(ζ)dζ

)−1

is definite. Therefore, we need the following assumption:

The real-valued function b defined on [0, T ] is continuous on [0, T ], nonnegative and satisfies that bT :=∫ T

0
b(ζ)dζ > 0.

Consider the operator S:

Sν =

+∞∑
i=1

(∫ T

0

r(T − ζ, λi)b(ζ)dζ

)−1

νiei,

with the domain

D(S) = {ν ∈ L2(Σ) :

+∞∑
i=1

(∫ T

0

r(T − ζ, λi)b(ζ)dζ

)−2

ν2i < +∞}.

Then

a = S
[
ξ(u)−R(T )ϕ−

∫ T

0

R(T − ζ)g(u(ζ))dζ
]
,

u(t) = R(t)ϕ+

∫ t

0

R(t− ζ)ab(ζ)dζ+
∫ t

0

R(t− ζ)g(u(ζ))dζ.
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Lemma 3.2. With bT =
∫ T

0
b(ζ)dζ > 0, we have the following properties of S:

(a) D(S) = D(−∆).

(b) If ν ∈ H2 then Sν ∈ L2(Σ) and ∥Sν∥ ≤ b−1
T ∥ν∥+ b−1

T m(T )−1∥(−∆)ν∥, here m is given as in (NND).

(c) If ν ∈ H1 then Sν ∈ H−1 and

∥Sν∥H−1 ≤ b−1
T λ

− 1
2

1 ∥ν∥+ b−1
T m(T )−1∥(−∆)

1
2ν∥.

(d) If g ∈ C([0, T ];L2(Σ)) and ∥g∥∞ = sup[0,T ] ∥g(t)∥ then S(R ∗ g)(T ) ∈ H−1 and

∥S(R ∗ g)(T )∥H−1 ≤ b−1
T λ

− 1
2

1 [λ−1
1 +m(T )−1]∥g∥∞. (3.7)

(e) Assume that g ∈ C0,ι((0, T ];L2(Σ)) for 0 < ι < 1, this means there exists Cg > 0 such that for all t > 0,

ϵ ∈ (0, T − t) we have

∥g(t+ ϵ)− g(t)∥ ≤ Cgϵ
ι.

Then S(R ∗ g)(T ) ∈ L2(Σ) and

∥S(R ∗ g)(T )∥ ≤ b−1
T ∥(R ∗ g)(T )∥+ b−1

T m(T )−1[Cgι
−1T ι + ∥g(T )∥].

3.3. Solvability and stability

In this section, we assume that:

(F1) The function g : L2(Σ) → L2(Σ) satisfies g(0) = 0 is locally Lipschitzian, that is

∥g(ν1)− g(ν2)∥ ≤ Lg(ϑ)∥ν1 − ν2∥, ∀∥ν1∥, ∥ν2∥ ≤ ϑ,

where ϑ ≥ 0 and Lg(·) is a nonnegative function obeying that

L∗
g := lim sup

ϑ→0
Lg(ϑ) < +∞.

(F2) The real-valued function b defined on [0, T ] is continuous on [0, T ], nonnegative and satisfies that bT :=∫ T

0
b(ζ)dζ > 0.

(F3) The function ξ : C([0, T ];L2(Σ)) → H1 satisfies ξ(0) = 0 and the locally Lipschitz condition

∥ξ(ν1)− ξ(ν2)∥H1 ≤ Lξ(ϑ)∥ν1 − ν2∥∞, ∀∥ν1∥∞, ∥ν2∥∞ ≤ ϑ,

here Lξ(·) is a nonnegative function such that L∗
ξ := lim sup

ϑ→0
Lξ(ϑ) < +∞.

We define the mild solution of this problem as follows.

Definition 3.1. The pair (a, u) ∈ H−1 ×C([0, T ];L2(Σ)) is said to be a mild solution of the problem (3.1)-(3.4)

iff

a = S
[
ξ(u)−R(T )ϕ−

∫ T

0

R(T − ζ)g(u(ζ))dζ
]
,

u(t) = R(t)ϕ+

∫ t

0

R(t− ζ)ab(ζ)dζ+
∫ t

0

R(t− ζ)g(u(ζ))dζ.

The following theorem states a result on the existence of mild solution.
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Theorem 3.1. Under the assumptions (F1)-(F3), there exists δ > 0 such that for ∥ϕ∥ < δ, the problem (3.1)-

(3.4) has a unique mild solution, provided that

LbL
∗
ξ + (Lbλ

1
2
1 + 1)λ−1

1 L∗
g < 1,

where

Lb = λ
− 1

2
1 ∥b∥∞b−1

T (λ−1
1 +m(T )−1). (3.8)

We now consider the case ξ does not depend on u. We will prove that the solution map (ξ,ϕ) 7→ (a, u) is

Lipschitzian as a correspondence from H1 × L2(Σ) to H−1 × C([0, T ];L2(Σ)).

Theorem 3.2. Assume that ξ is independent of u and g is globally Lipschitzian with Lipschitz constant L∗
g.

Then the solution map (ξ,ϕ) 7→ (a, u) is Lipschitz continuous, provided that:

(Lbλ
1
2
1 + 1)λ−1

1 L∗
g < 1.

3.4. Regularity analysis

If ξ is regular enough, we can show that the mild solution is a strong one.

Definition 3.2. A pair (a, u) ∈ L2(Σ)×C([0, T ];L2(Σ)) is called a strong solution to the problem (3.1)-(3.4) iff

(3.1), (3.3) and (3.4) hold as equations in L2(Σ).

To deal with strong solution, we replace (M) by a stronger hypothesis:

(M*) The condition (M) holds and k is a nonincreasing function.

The main result of this section is stated in the following theorem.

Theorem 3.3. Assume that (F1)-(F3) and (M*) hold. If ξ takes values in H2 and b is Hölder continuous, then

the mild solution of (3.1)-(3.4) is a strong one.

In order to prove this result, we need some lemmas.

Lemma 3.3. Assume that (F1)-(F3) and (M*) hold. Let (a, u) be the mild solution of the problem (3.1)-(3.4).

Then u is Hölder continuous on (0, T ]. Precisely, there exist d1, d2 > 0 and ι ∈ (0, 1
2 ) such that for all t > 0,

ω ∈ (0, T − t] it holds that

∥u(t+ ω)− u(t)∥ ≤ (d1t
−ι + d2)ω

ι. (3.9)

Lemma 3.4. Let the assumptions of Theorem 3.3 hold and (a, u) be the mild solution of (3.1) − (3.4). Then u

is differentiable on (0, T ], that is u′(t) ∈ L2(Σ) ∀t ∈ (0, T ].

Lemma 3.5. Let the assumptions of Theorem 3.3 hold and (a, u) be the mild solution of (3.1) − (3.4). Then

∆u(t) ∈ L2(Σ) ∀t ∈ (0, T ].

Lemma 3.6. Let the assumptions of Theorem 3.3 hold and (a, u) be the mild solution of (3.1) − (3.4). Then

Dt,{k}∆u(t) ∈ L2(Σ) ∀t ∈ (0, T ].

3.5. Examples of g and ξ

In this section, we deliver examples for (F1) and (F3).

For (F1), we choose g : L2(Σ) → L2(Σ) as follows:

g(v)(x) =

(∫
Σ

|v(x)|2dx
)p

v(x) = ∥v∥2pL2(Σ)v(x), p ≥ 1.
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For (F3), we choose ξ(u)(x) =
∫
Σ
κ(x, y)u(T, y)dy, here κ : Σ × Σ → R is continuously differentiable with

respect to the first variable, κ(x, y) = 0 when x ∈ ∂Σ and we need the following condition∫
Σ

∥∇κ(x, y)∥2L2(Σ)dy < +∞.
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Chapter 4

FINAL VALUE PROBLEM FOR

RAYLEIGH-STOKES TYPE

EQUATIONS INVOLVING

WEAK-VALUED NONLINEARITIES

The final value problem governed by Rayleigh-Stokes type equations is investigated in the circumstance that the

nonlinearity function may take values in Hilbert scales of negative order. We prove the existence and Hölder

regularity results by analyzing the regularity of the resolvent operators and using the fixed point arguments.

The content of this chapter is based on the paper [3] in the author’s works related to the thesis that have been

published.

4.1. Problem setting

Let Σ ⊂ Rd be a bounded domain with smooth boundary ∂Σ. Consider the following problem:

∂u

∂t
−∆u−Dt,{k}∆u = g(u) in Σ, 0 < t < T, (4.1)

u = 0 on ∂Σ, t > 0, (4.2)

u(T, ·) = ξ in Σ, (4.3)

where g is given function, u is the unknown function defined on (0, T ] × Σ, Dt,{k} is the nonlocal differential

operator of Riemann-Liouville type defined by:

Dt,{k}v(t) =
d

dt

∫ t

0

k(t− ζ)v(ζ)dζ,

with respect to the kernel function k ∈ L1
loc(R+). In this problem, we need the following conditions:

(M) k ∈ L1
loc(R+) is nonnegative and a(t) = 1 + k(t) is completely positive.

(NND) There exists a positive nonincreasing function m ∈ L1
loc(R+) such that

m ∗ a = 1 on R+.
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4.2. Representation of the mild solution and estimations for resolvent

operator

We consider the resolvent operator R(t) as in (1.7). The following lemma give us the properties of R(t):

Lemma 4.1. Let {R(t)}t≥0 be a family of resolvent operators defined by (1.7), u ∈ L2(Σ) and T > 0. Then

(a) R(·)u ∈ C([0, T ];L2(Σ)) and ∥R(t)∥ ≤ r(t, λ1) for all t ≥ 0.

(b) If k is nonincreasing, then R(·)u ∈ C1((0, T ];L2(Σ)) and the following holds:

∥R′(t)∥ ≤ t−1 for all t > 0. (4.4)

(c) For ν ∈ (0, 1), ϖ > 0 and h ∈ C([0, T ];Hϖ−1−ν), we have:

∥R ∗ h(t)∥2ϖ ≤
∫ t

0

(t− ζ)−ν∥h(ζ)∥2ϖ−1−νdζ,

and

∥R ∗ h(t)∥2ϖ ≤
∫ t

0

[1 ∗ k(t− ζ)]−ν∥h(ζ)∥2ϖ−1−νdζ.

(d) If (1 ∗ k)−1 ∈ L1(0, T ) then for ϖ > 0 and h ∈ C([0, T ];Hϖ−2) we get

∥R ∗ h(t)∥2ϖ ≤
∫ t

0

∥h(ζ)∥2ϖ−2

(1 ∗ k)(t− ζ)
dζ.

We now find a representation of the solution to the linear final value problem:

∂u

∂t
−∆u−Dt,{k}∆u = F in Σ, 0 < t ≤ T, (4.5)

u = 0 on ∂Σ, 0 < t ≤ T, (4.6)

u(T, ·) = ξ in Σ, (4.7)

where F ∈ C([0, T ];L2(Σ)). From (1.6) we have

ξ = R(T )ϕ+

∫ T

0

R(T − ζ)F(ζ)dζ.

Then

ϕ = R(T )−1[ξ−
∫ T

0

R(T − ζ)F(ζ)dζ].

So the solution to (4.5)-(4.7) is given by

u(t) = S(t)[ξ−R ∗ F(T )] +R ∗ F(t), (4.8)

where

S(t) = R(t)R(T )−1 =

+∞∑
i=1

r(t, λi)

r(T, λi)
⟨·, ei⟩ei. (4.9)

Some important properties of S(t) are presented in the following proposition.

Lemma 4.2. The family of operators S(t) defined by (4.9) has the following properties:

(a) If 0 ≤ η ≤ 1, ϖ > 0 and ξ ∈ Hϖ+2(1−η) then

∥S(t)ξ∥ϖ ≤ C(m)t−η∥ξ∥ϖ+2(1−η), t > 0,

and

∥S(t)ξ∥ϖ ≤
C(m)∥ξ∥ϖ+2(1−η)

[1 ∗ k(t)]η
, t > 0,

where C(m) = λ−1
1 +m(T )−1.
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(b) For 0 < ν < 1, 0 ≤ η ≤ 1, ϖ > 0 and h ∈ C([0, T ];Hϖ+1−2η−ν), we have:

∥S(t)[R ∗ h(T )]∥2ϖ ≤ C(m)2t−2η

∫ T

0

(T − ζ)−ν∥h(ζ)∥2ϖ+1−2η−νdζ.

(c) If 0 ≤ η ≤ 1 and (1 ∗ k)−1 ∈ L1(0, T ) then for ϖ > 0 and h ∈ C([0, T ];Hϖ−2η), we have:

∥S(t)[R ∗ h(T )]∥2ϖ ≤ C(m)2

1 ∗ k(t)2η

∫ T

0

∥h(ζ)∥2ϖ−2η

1 ∗ k(T − ζ)
dζ.

Lemma 4.3. Assume that k is nonincreasing. Then for 0 < τ ≤ 1, 0 < ω ≤ 1, ϖ > 0 and ξ ∈ Hϖ+2ω, there

exists Cτ > 0 such that

∥[S(t+ ϱ)− S(t)]ξ∥ϖ ≤ Cτϱ
τω∥ξ∥ϖ+2ω

[1 ∗ k(t)]1−ωtτω
, t ∈ (0, T − ϱ], ϱ > 0.

4.3. Solvability

To deal with the problem (4.1)-(4.3), we use the following hypothesis for g:

(G) The function g : Hϖ → H−γ satisfies g(0) = 0, here ϖ > 0 and γ is nonnegative. Moreover, there exist

nonnegative functions Lg and Lg such that for u1, u2 ∈ Hϖ we have:

∥g(u1)− g(u2)∥−γ ≤ Lg(∥u1∥ϖ, ∥u2∥ϖ)∥u1 − u2∥ϖ

and

Lg(λθ, λθ
′) ≥ Lg(λ)Lg(θ, θ

′), for all λ, θ, θ′ > 0.

Based on (4.8), we give the concept of mild solution to the problem (4.1)-(4.3) as follows.

Definition 4.1. Given ϖ > 0. A function u ∈ C((0, T ];Hϖ) is called a mild solution to the problem (4.1)-(4.3)

if

u(t) = S(t)ξ− S(t)
∫ T

0

R(T − ζ)g(u(ζ))dζ+
∫ t

0

R(t− ζ)g(u(ζ))dζ, ∀t ∈ (0, T ].

We consider the solution space of (4.1)-(4.3) as follows:

Mϖ,η = {u ∈ C((0, T ];Hϖ) : u(T ) = ξ and ∥u∥ϖ,η := sup
t>0

tη∥u(t)∥ϖ < +∞},

where ϖ > 0,η > 0 and ξ is given.

Theorem 4.1. Given ϖ ∈ (0, 1], η ∈ (0, 1), ν ∈ (0, 1) such that 2η + ν ≥ ϖ + 1. Assume that (G) holds for

γ = 2η+ ν−ϖ− 1. Then there exist θ∗ > 0 and δ > 0 such that if ∥ξ∥ϖ+2(1−η) ≤ δ and

6L∗
g
2[C(m)2Λ(T ) + λ2η−2

1 sup
t∈(0,T ]

t2ηΛ(t)] < 1,

here

L∗
g = lim sup

θ,θ′→0
Lg(θ, θ

′),

Λ(t) =

∫ t

0

(t− ζ)−νζ−2ηLg(ζ
η)−2dζ,

then the problem (4.1)-(4.3) has a unique mild solution u in Mϖ,η satisfying that ∥u∥ϖ,η ≤ θ∗.

If g is globally Lipschitzian and the kernel k satisfies that (1 ∗ k)−1 ∈ L1(0, T ) then we obtain the following

result:
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Theorem 4.2. Assume that g : Hϖ → Hϖ−2η, ϖ > 0, 0 < η < 1 and g satisfies that

∥g(u1)− g(u2)∥ϖ−2η ≤ L∗
g∥u1 − u2∥ϖ for all u1, u2 ∈ Hϖ.

If (1 ∗ k)−1 ∈ L1(0, T ) and

L∗ := 2L∗
g
2[C(m)2Θη(T ) + λ

4(η−1)
1 sup

0<t≤T
1 ∗ k(t)2ηΘη(t)] < 1,

here

Θη(t) =

∫ t

0

[1 ∗ k(t− ζ)]−1[1 ∗ k(ζ)]−2ηdζ, (4.10)

then the problem (4.1)-(4.3) has a unique mild solution in the space

Nϖ,η = {u ∈ C((0, T ];Hϖ) : u(T ) = ξ and ∥u∥ϖ,k,η := sup
0<t≤T

1 ∗ k(t)η∥u(t)∥ϖ < +∞},

for given ξ ∈ Hϖ+2(1−η).

4.3. The Hölder regularity

In this section, we need a stronger hypothesis.

(M*) The function k satisfies the hypothesis (M) and k is nonincreasing.

Theorem 4.3. Assume that (M*) holds and g : Hϖ → Hϖ−2(1−ω), ϖ > 0, 0 < ω < 1 such that

∥g(u1)− g(u2)∥ϖ−2(1−ω) ≤ L∗
g∥u1 − u2∥ϖ, for all u1, u2 ∈ Hϖ,

here L∗
g > 0. Moreover, we assume that (1 ∗ k)−1 ∈ L1(0, T ) and

L∗ := 6L∗
g
2[C(m)2Θ1−ω(T ) + λ−4ω

1 sup
0<t≤T

[1 ∗ k(t)]2(1−ω)Θ1−ω(t)] < 1,

6λ−4ω
1 L∗

g
2M∗

ω,τ < 1, Θ∗ := sup
ϱ∈(0,T )

1

ϱ2τω

(
Θ1−ω(ϱ) +

∫ ϱ

0

dζ

1 ∗ k(ζ)

)
< +∞,

with Θ1−ω defined by (4.10), τ ∈ (0, 1] and

M∗
ω,τ := sup

t∈(0,T )

[1 ∗ k(t)]2(1−ω)t2τω
∫ t

0

dζ

[1 ∗ k(t− ζ)][1 ∗ k(ζ)]2(1−ω)ζ2τω
.

Then the problem (4.1)-(4.3) has a unique solution in Nϖ,1−ω for given ξ ∈ Hϖ+2ω and this solution is Hölder

continuous on (0, T ].

4.4. Examples

In this section, we give examples for g so that we have the conditions in Theorem 4.1, Theorem 4.2 and Theorem

4.3.

Example 4.1. Example for Theorem 4.1.

Assume that Σ ⊂ Rd with d ≥ 2. Then we can choose g(u) = |u|r and ϖ,γ,ν,η as in Theorem 4.1.

Example 4.2. Example for Theorem 4.2 and Theorem 4.3.

Consider Σ ⊂ Rd with d ≥ 3. Then we can choose g such that it is globally Lipschitzian:

g(u) = g(x) · ∇u+ b(x) ln(1 + u2),

where g = (g1, ...,gd) ∈ (L∞(Σ))d, b ∈ Ld(Σ), and

k(t) =
t−α

Γ(1− α)

with 0 < α < 1,η = ω = 1
2 .
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CONCLUSION

1. Results of the thesis

We study forward and inverse problems for Rayleigh-Stokes equation, which is a nonlocal partial differential

equation. Our results are:

(a) For the Cauchy problem for Rayleigh-Stokes equation involving delays:

• Solvability: the existence of mild solution.

• Stability: the existence of a bounded absorbing set, the asymptotic stability of zero solution and the

existence of a compact set of decay solutions.

(b) For the identification problem for generalized Rayleigh-Stokes equation:

• The existence and uniqueness of mild solution and the Lipschitz continuity of the solution map.

• The mild solution becomes strong solution with suitable conditions.

(c) For the final value problem for Rayleigh-Stokes type equations involving weak-valued nonlinearities:

• The existence and uniqueness of mild solution.

• The Hölder regularity of mild solution.

2. Recommendation

• The Cauchy problem for generalized Rayleigh-Stokes equation: find the conditions such that the mild

solution continuously depends on the kernel k.

• The identification problem for generalized Rayleigh-Stokes equation: consider other cases of measurement,

for example 1
T

∫ T

0
u(s)ds = ξ.

• The final value problem for generalized Rayleigh-Stokes equation: find the conditions such that the mild

solution becomes strong solution.
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