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INTRODUCTION

1. Motivation

The relationship between things in nature, particularly in our environment
is implied to be objective, universal, and holistic. It seems to exist the univer-
sal relationships and the universal laws behind the richness, the complexity,
and the miracles of natural behaviors. These universal natural laws govern
and control the physical processes and physical phenomena. Therefore, they
also govern the laws of processes and phenomena in chemistry, biology, etc.
People always try to discover the processes and the phenomena of the nat-
ural world from many perspectives and by every possible approach. Water
is the most studied material on Earth by interdisciplinary science, including
physics, chemistry, and biology in such a way.

It is well-known that water is the main component of living cell as well as
the important solvent in which chemical reactions can happen. Study of the
microdynamic behaviors of the liquid water system related to the interaction
between liquid water and EM field is an effective manner to explore several
microdynamic behaviors in living cells such as biological information trans-
fer, the hydration in biology and chemistry. A careful understanding about
the water - EM field interaction is also useful to interpret the dynamical phe-
nomena occurring in the ocean, aqueous chemical solution, and biological
system. It is difficult to develop application researches in several areas such
as food, medical industries, chemical industries, and remote sensing of the
ocean without a good knowledge about water microdynamics.

There is a great accomplishment with a long history on both the experi-
mental and the theoretical sides about water micro dynamics in Vietnam as
well as in the world. However, it is remarkable to find that the microdynamic
mechanism responsible for its behavior in relation to the interaction between
liquid water system and EM field in different spectrum ranges is not thor-
oughly understood. Some explanations of its complex features and behaviors
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bring a considerable disagreement, needing a further investigation. In ad-
dition, many other anomalous properties of water possibly remain to be not
discovered. According to the literature, several open topics about micrody-
namic behaviors of liquid water for further research could be mentioned in
detail as below:

A. The fast sound in liquid water

In 1974, using Molecular Dynamics (MD) simulations, A. Rahman and
S.H. Stillinger [126] proposed the coexistence of high-frequency collective
oscillations traveling with the speed about 3050 m/s (fast sound) and the
low-frequency mode whose speed is about 1500 m/s (common sound). This
simulation work induced a large number of experimental researches such as
Inelastic Neutron Scattering (INS) [15, 98, 110, 129, 130], Inelastic X-ray
Scattering (IXS) [89, 101, 110, 121, 122], or Inelastic Ultraviolet Scattering
(IUS) [116]. In addition, several MD simulations [8, 7, 9, 70, 101, 105, 117,
140] were performed to further clarify the origin of these excitations as well
as water complicated dynamical features. The most striking result of these
INS, IXS, IUS, and MD simulation studies recognized the coexistence of the
two collective density oscillation modes traveling in liquid water.

Two different models, the viscoelastic model (or model of structural
relaxation) [101, 119] and the two-mode interaction model [98, 110] were
given for description and explanation about the existence of both the modes.
In the model of structural relaxation, the different collective oscillation modes
propagating in liquid water were interpreted in terms of the relaxation time
τF (the time associated with breaking and forming of hydrogen bonds) be-
ing longer or shorter than the time scale related to the density fluctuations
[89, 101, 109]. This model was successfully applied to explain the pres-
sure and temperature dependence of several dynamical parameters [78, 101,
109]. The two-mode interaction model consists of two different dispersion
branches originated from the idea that the splitting of the lower branch from
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Fig. 0.1. Summarizing about collective density oscillation in liquid water
[109]: The open symbols correspond to the prediction in Ref. [126] whereas
the full symbols represent INS experimental data in Ref. [15, 129]. The
solid lines are fitting according to the fast sound (upper) and ordinary sound
(lower).

the longitudinal one due to the interaction between elementary excitations of
linear dispersion mode and those of the dispersionless mode with energy Ω0

(5−6 meV). It was suggested that the dispersion relations for both the modes
traveling in liquid water with the presence of the coupling coefficient β(Q)

between each other. Although the two-mode interaction model is a quite sim-
ple, it might make clear some observed features of the dynamic spectra and
describes quite well the dispersion of both the modes [110].

In spite of such efforts, the physical origin of the fast mode in liquid
water and the splitting of the two modes remains poorly understood. It is
necessary to conduct a further investigation for a deeper understanding about
the complex mechanisms of liquid water dynamics.

B. The low-frequency dielectric constant of liquid water

A. Sherman and H.M. Uriber [3] (2011) pointed out the temperature de-
pendence of the water relative permittivity in the region of low frequency
1000 Hz− 1 MHz with an interesting surprise. They found a special point
called the isopermittive point at the frequency ωiso where the water dielec-
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tric constant does not depend on temperature. Rising temperature makes the
dielectric constant of liquid water increase at frequencies below ωiso but de-
crease at frequencies above ωiso. This behavior of the dielectric constant for
pure water is similar to that of glycerol-water mixtures [4].

Some theoretical models have been suggested to describe the dielectric
spectroscopy behavior of water, such as the models of Debye [34], Onsager
[92], and Kirkwood [75]. Nevertheless, it is impossible to apply these models
to illuminate the dynamical mechanism behind the behavior of the isopermit-
tive point because they are only suitable to interpret effects happening in the
frequency range above 1 GHz. The dynamical mechanism that is responsi-
ble for the existence of the isopermittive point has just been explained by the
phenomenological model [3]. Nowadays, there is lacking a theoretical model
for the description about the water dielectric dispersion at low frequencies
originated from solid arguments.

C. The microwave conductivity of electrolyte solutions

Electrical properties of electrolyte solutions have attracted a great atten-
tion of researchers over the last 120 years [79]. Numerous experimental
works about the dielectric spectrum of electrolyte aqueous solutions were
performed with interesting results [49, 53, 91, 99]. The relaxation of the per-
mittivity of electrolyte solutions around 10 GHz has been carefully measured.
It is useful to provide the microwave conductivity dispersion of the electrolyte
solution via the combination of Debye and Drude models [23, 83]. In more
detail, the static conductivity of electrolyte solutions at room temperature
linearly increases with the increase in density of ions. This dependence was
explained by the simplified Drude model. In addition, its microwave conduc-
tivity holds constant at low frequency (under 8 GHz) [22, 23, 99, 100], obvi-
ously decreases as the frequency increases, and reaches zero at high enough
frequencies. However, there is a small amount of attention to focus on the
mechanism responsible for the dispersion of microwave conductivity of elec-
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trolyte solutions. Thus, it is necessary to conduct a further research for a
better understanding about its mechanism.

D. The nonlinear decrement in the static permittivity and in
the static specific conductivity of electrolyte solutions

The decrement of the static dielectric constant of different electrolyte
solutions has carefully measured by technique of relaxation spectroscopy
[13, 26, 86, 99, 142]. It linearly decreases versus concentration for dilute
solutions, but non-linearly decreases for concentrated solutions.

The mechanism responsible for the linear decrement of the static permit-
tivity was carefully studied by Haggis et.al. [55], E. Glueckauf [50], and
J. Liszi et.al. [84]. Lately, the science behind the nonlinear decrement of
the static permittivity for concentrated electrolyte solutions has been theoret-
ically mentioned by the field theory (2012) [82] and the micro-field approach
(2016) [48]. However, the static permittivity versus the concentration in these
previous models remains in a complicated mathematical form, causing en-
cumbrances in calculation of the mean ionic activity coefficient of electrolyte
solutions and in extension of the Debye-Hückel (D-H) theory [35]. There-
fore, the current achievements in the expansion of the D-H theory just only
stops at the level in which the static permittivity of electrolyte solution is
considered to be linearly dependent of the concentration, resulting in a sig-
nificant difference between theoretical results and experimental data on the
activity coefficient of concentrated solutions in the work of I.Y. Shilov and
A.K. Lyashchenko [124].

A great number of data about the specific conductivity of electrolyte so-
lution have been provided by experimental works [21, 51, 127]. The Debye–
Hückel–Onsager relation is known as the expression depicting its concen-
tration dependence for dilute solutions. Many aspects of this law have been
clarified and it has been expected to improve the theory for solutions in higher
concentrations for last 100 years. Firstly, Fralkenhagen [141] model extended
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this model by taking into account the ionic atmosphere and electrophoretic
effects, expanding the validity of the model up to 0.1 mol/L. Lately, some
other methods were proposed to increase the range of applicability of the the-
oretical model about the specific conductivity, for example, substituting the
concentration by the parameters of the solution such as the viscosity [133],
adding adjustable parameters without physical meaning [32, 141] or focus-
ing on the ionic cloud interaction and ion-ion interaction. However, it is just
suitable for solutions below 2.5 mol/L [133].

According to above mentioned information, water nonlinear dynamics in
relation to the interaction between water systems and EM field is not still
sufficiently understood. Water could be still a potential object for future
prospective researches. In order to further clarify the microscopic dynami-
cal behaviors of water systems with the inheritance and the development of
previous results, we select the topic named “Study on some microdynamic
behaviors of liquid water” for this doctoral thesis.

2. Thesis purposes

The aims of the thesis focus on studying about some water nonlinear dynamic
phenomena, specifically as follows

• Investigate the dynamics responsible for dispersion of the collective
density oscillations with the coexistence of the ordinary mode and the
anomalous mode in liquid water.

• Study the dispersion of water dielectric constant at low frequencies and
highlight the nature behind the isopermittivity point by microscopic
approach.

• Investigate the nonlinear electrodynamics of water system in relation
to the interaction between electrolyte aqueous solutions and EM field
in different ranges of frequency to unveil microscopic mechanisms re-
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sponsible for the dispersion of the microwave conductivity, the nonlin-
ear decrement in the static permittivity, and the nonlinear increase in
static specific conductivity.

3. Objectives and scopes

The first objective of this thesis is the dispersion of collective density
waves in the THz frequency range propagating in pure water with the fast
sound and the ordinary sound modes. The other objective of the thesis is the
nonlinear electrodynamics of pure water and aqueous solutions in different
ranges of frequency, including the dispersion of the low-frequency water per-
mittivity, the dispersion in microwave conductivity, the nonlinear decrement
in static permittivity, and the nonlinear increase in static specific conductivity
of concentrated electrolyte solutions as rising concentration.

Project scopes mostly focuses on developing, interpreting, and further
clarifying the mechanism behind the nonlinear dynamical phenomena of liq-
uid water and electrolyte solutions in some different ranges of frequency via
theoretical approach.

4. Mission of research

The mission research is given as follows

• Describing quantitatively the dispersion of collective density oscilla-
tions propagating in liquid water on the basis of analyzing related mi-
croscopic dynamical mechanism using the theory commonly used in
solid materials with a subsequent improvement. The origin of the fast
sound, the spectrum range, the wavelength region, and the reliance of
the spectrum range on temperature need obviously pointing out. In
addition, the dynamics in THz frequency range is further studied.
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• Developing a theoretical model for interpretation of the permittivity
dispersion of liquid water at low frequency and clarifying the science
behind the existence of the isopermittivity point in the spectrum.

• Providing a theoretical model for depicting the dispersion of the per-
mittivity of electrolyte solutions at room temperature and further re-
vealing information about their microwave microscopic electrodynam-
ics.

• Giving a theoretical model to describe the nonlinear decrement in the
static permittivity, the nonlinear increase in the specific conductivity of
concentrated electrolyte solutions at room temperature and illuminat-
ing concerned microscopic mechanism by the ways which differ from
the previous corresponding theoretical researches.

5. Research methods

In this thesis, we use a variety of different theoretical methods with the
combination of these methods. Combining and customizing theoretical tech-
niques in solid physics are applied as a critical tool for this topic. In more
detail, the Phonon Polariton (PP) model is applied with a subsequent cus-
tomization due to the diffusion of water molecules for description of the col-
lective density oscillation in liquid water, in a similar way for solid materials.
Jellium theory is also used to estimate the plasmon frequency of electrolyte
aqueous solutions. Combining Drude and jelium theories, the dispersion of
the microwave conductivity of electrolyte solutions at different concentra-
tions is quantified. Statistical approach is applied for representing the non-
linear decrement in static permittivity versus the concentration of electrolyte
solutions using the Langevin statistics that is familiar in use for study of the
paramagnetism properties of solid materials with a subsequent correction.
This correction originates from the influence of the local electric field radi-
ated by ions on the polar polarization and the dilution of water dipoles by
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ions. Moreover, the theory describing the static specific conductivity of met-
als is customized from the viewpoint that there is a transformation of the local
electric field from weak to strong interaction regimes to present the reliance
of the static conductivity on the concentration of electrolyte solutions.

Numerical calculation is used to define dynamical parameters of liquid
water and the other similar simple liquids such as volume, shear, and lon-
gitudinal moduli, THz dielectric constant of liquid water, phase and group
velocities of collective fluctuations, and so on. In addition, technique of data
analysis is carried out to assess the validity of provided theoretical models.

6. Thesis significance

• Our new results take part in further understanding about the specific
properties of water systems

• Research further contributes to new research results on water dynamics
in hope to promote investigation about chemical and biological inter-
actions and so on.

• The thesis broadens theories, that are commonly used to investigate
the dynamics of solid materials, with corresponding customization as
useful tools to study the dynamics of liquid water

• The obtained results are considered as an inheritance and a develop-
ment of previous results about water dynamics.

7. Thesis outline

The thesis includes following parts

• Introduction

13



• Chapter 1: Properties and complicated behaviors of water. We outline
the molecular structure of liquid water, the interaction between water
molecules, and some fundamental characteristics of liquid water that
have ever been widely recognized. Moreover, some outstanding exper-
imental and theoretical results about dielectric constant and dynamics
of liquid water systems are also summarized in order to point out open
topics for our research.

• Chapter 2: Some dynamic features of liquid water. Collective den-
sity fluctuations of liquid water in the terahertz range is quantitatively
described by PP theory with a subsequent correction, interpreting the
origin as well as spectrum range of the ordinary and the anomalous
sound modes. Some dynamical parameters in the terahertz frequency
range are estimated. The electro-acoustic correlation of liquid water is
also revealed. In addition, a microscopic approach is represented for
interpretation of the dispersion of water dielectric constant at low fre-
quencies. The science behind of the isopermittivity point is illuminated
under the view from the basis of dynamics as well as thermodynamics.

• Chapter 3: Microwave electrodynamics of electrolyte solutions. The
plasmon frequency of electrolyte solutions is calculated by using jel-
lium theory. In addition, the frequency dependence of the microwave
conductivity for electrolyte solutions at room temperature with differ-
ent concentrations is quantitatively described and interpreted via the
combination of Drude theory and jellium theory, obeying logistic statis-
tic. Dynamical mechanism that is responsible for the microwave con-
ductivity dispersion is further illuminated.

• Chapter 4: Nonlinear electrostatics of electrolyte solutions. The sta-
tistical model is built for depicting and interpreting the nonlinear decre-
ment in the static dielectric constant for different electrolyte solutions
below 5 mol/L obeying the Langevin theory. The decrement in De-
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bye screening length versus concentration is considered more carefully
according to the statistical model. In addition, the nonlinear increase
in static specific conductivity of concentrated electrolyte solutions ver-
sus the concentration is described by the same way, that is used for
description of the conductivity of metals, with taking into account the
transformation of the local field from weak regime to strong regime.

• Conclusions and future reseach suggestions

The computational results are expressed in figures 2.2, 2.3, 2.4, 2.5, 2.6, 3.1,
3.2, 4.1, 4.2, 4.3, 4.4, 4.5, and in table 4.1.
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Chapter 1

PROPERTIES AND COMPLICATED BEHAVIORS OF

WATER

Properties and complicated dynamic behaviors of water and aqueous so-
lutions attract a great of interest of researchers. A variety of experimental
works have been carried, revealing information about the microscopic mech-
anism, structure and properties of water at the molecular level, particularly,
the experiments of spectroscopic scattering [123]. Calculation simulation has
also played an important role, achieving a level of sophistication in the study
of water and aqueous solutions, for interpreting experiments and properties
not directly accessible by experiment. Many theoretical models have been
provided for explaining the water’s basic physical properties and describing
the microscopic mechanism happening in liquid water and aqueous solutions
such as the field theory, micro-field model, and statistics besides familiar the-
ories of liquid dynamics.

In this chapter, we attempt to outline fundamental knowledge in relation
to the structure, properties, and complicated behaviors of liquid water. More-
over, the advances in the researches about electrodynamics and dynamics of
water systems are summarized. According to the overview and outline, the
open topics for this doctoral thesis are found out.
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1.1 Fundamental physical properties

Water possesses a variety of properties that are quite different from those
of other liquids. According to the reported literature, water has about 72
different anomalous properties [64]. A large number of anomalous character-
istics of water are being treated or could be potential researches in the future.
The anomalous properties are rather derived from its microscopic structuring,
relating directly to the hydrogen bonds and the small size of molecules. The
reason is that the hydrogen bonds can produce and control the local struc-
ture of water molecules. It seems that liquid water dynamics is controlled by
the strength and direction of the hydrogen bonds. It is suggested that water
would behave as expected as common liquids if hydrogen bonding did not
exist [128].

Water is one of the lightest substances in the gas phase. In the liquid
phase, it is however much denser than expected. In particular, as a solid, it is
much lighter than expected in comparison to its liquid form. At 40C, water is
the most dense, i.e. its density in the liquid phase is larger than that in solid
form, an unprecedented property of the other materials.

It can be simultaneously extremely slippery and extremely sticky in the
ice phase [118]. The high cohesion between water molecules and their small
size make water have high freezing and melting points. As a result, water is
in liquid phase in the temperature range, which is quite close to that of living
system. Due to its high specific heat, high thermal conductivity and high
water content, organisms can counteract the fluctuation of the surrounding
temperature. Moreover, because of its high heat of vaporization, organism
gives resistance to dehydration and considerable evaporate cooling.

Differing from the other similar liquids, the strong interaction between
water molecules via hydrogen-bonding network also results in a high viscos-
ity. However, its viscosity is not high enough that makes water flow easily.
The viscosity of water is a parameter that is in relation to the kinetic fea-
tures of molecules and ions in aqueous solutions. It also provides an upper
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bound to the length scale over which biological processes can occur purely
by diffusion [64].

Moreover, liquid water is an excellent solvent due to its high polarization
properties, large dielectric constant and small size. It is one of the highest
dielectric constants of any nonmetallic liquid. Its static dielectric constant at
room temperature was found to have the value about 78.6. The permittivity
of liquid water strongly disperses with some relaxation processes at different
frequencies [19].

For common liquid, the sound wave is longitudinal whose speed is faster
and decreases with reducing temperature, at all temperatures. The speed of
a sound wave in liquid water is over four times greater than that in the air,
increasing versus temperature and reaching maximum at 740C [64]. The sur-
face tension of water is also an important parameter in relation to many bi-
ological or the other processes, about 3 times higher than that of non-polar
liquids such as oils [64]. Its value is about 72.8 mN/m, including two lev-
els. Below about 1 mm of length scale, gravitational and viscous forces play
dominated role and the air–water interface seems to be an effective impene-
trable barrier. For that reason, liquid water is an ideal environment of small
insects, bacteria and other microorganisms [16, 42]. At the second level ac-
cording to the molecular scale from 0.1 to 100 nm, the surface tension plays
a critical role, responsible for water’s solvent properties.

Nowadays, the science behind many normal and anomalous physical prop-
erties of liquid water is understood. However, the dynamical mechanism and
the physical nature of some complicated phenomena are still being discussed
with several opposite viewpoints, needing a further investigation. Research
on the anomalous properties of water and aqueous solutions is currently a
challenging task. We spend a particular and profound attention about the
anomalous features and the nonlinear electrodynamics of liquid water and
aqueous solutions.
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Table 1.1: Some basis properties of pure liquid water at 298K in comparison
with two similar liquids [123].

Properties Water Methanol Dimethyl ether
Formula H2O CH3OH (CH3)2O

Molecular weight (g/mol) 18 32 46
Density (kg/L) 0.998 0.7914 0.713

Boiling temperature (K) 373 338 248
Temperature of maximum density (K) 277 None None

Specific heat (J/K.kg) 4180 2530 2370
Heat of vaporization (J/kg) 2300 1160 400

Surface tension (mN/m) 72.8 22.6 16.4
Viscosity (µP.s) 1002 550 233

Dielectric constant 78.6 33.6 5
Normal sound speed (m/s) 1525 1076 985

Dipole moment in gas phase (C.m.10−30) 6.01 5.68 4.34

1.2 Molecular structure and polarization

In order to have a thorough understanding about the nature of the anoma-
lous features and microscopic dynamical mechanism of water, it is necessary
to interest in its instantaneous molecular structure at various thermodynamic
state points, the polarity of water molecules as well as the interaction between
molecules. The size of the water molecule is much smaller than almost all
other molecules. A water molecule is found in the V shape illustrated by Fig.
1.1 in which the oxygen atom locates at the joint and the hydrogen atoms sit-
uate at the top points with the mean angle about of 104.50 [64, 96, 123]. Each
molecule is considered approximately as a sphere whose mean diameter is
approximate 2.75 Å, consisting two O-H bonds with a length of about 0.096
nm. The oxygen end’s charge is slightly negative noted −2δ whereas hy-
drogen end has a slightly positive one +δ (δ is the reduced electron charge).
So, water molecule is neutral but polar with the center of positive and neg-
ative charges located in different places, giving two dipole moments. In the
gas phase, the value of dipole moment is approximate 6.01 10−30C.m but its
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value is larger as the water in the glass or liquid phases, about 8.01 10−30C.m

due to the mutual polarization of neighboring water molecules. Because
of the opposite charges on the oxygen and hydrogen ends, water molecules
could interact between each other. In more detail, atoms, that are not bonded,
would repel each other strongly as the distance between each other is small
enough because of the overlap of the electron orbitals. Inversely, at large
enough distances, two atoms attract each other weakly via the London dis-
persion force. The repulsive and the attractive interactions between atoms
obey the well-known expression named van der Waals law. The repulsive
and the attractive interactions between atoms are in the balance state when
their distance is about 0.32 nm for oxygen and 0.16 nm for hydrogen.

Hydrogen bond

δ-

δ- δ-

δ-

δ+

δ+

δ+

δ+

10
4.

5
0

Oxygen

Hydrogen

Fig. 1.1. The structure of water molecule with V-sharp and the hydrogen
bond between two molecules.

1.3 Hydrogen bonding

The opposite charges on the oxygen and hydrogen atoms make the wa-
ter molecules attract each other. Hydrogen atoms are not only covalently
attached to their oxygen atoms but also attracted towards another nearby
oxygen atoms in another water molecule, making the hydrogen bonds. The
existence of hydrogen bonds and the high-density of molecules related to
their small size produces a great cohesion within liquid water, responsible for
anomalous properties of liquid water at ambient temperatures. It was pointed
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Oxygen

Hydrogen

Fig. 1.2. Schematic of the tetrahedral coordination of water molecules. 5
molecule tetrahedron has a larger dipole than that of a single molecule.

out that the hydrogen bonds are particularly strong when the O-H bond from
one water molecule points directly at a neighboring oxygen atom in another
water molecule so that the three atoms O-H-O are in close to a straight line
[64]. Such a hydrogen bonding makes the energy of the collective ground
state of liquid water lower than that found in single gaseous molecules.

The water hydrogen bond is weaker than about a twentieth of the strength
of the O-H covalent bond. However, it is strong enough to maintain during
the processes of thermal fluctuation at ambient temperatures [123]. The in-
termediate strength hydrogen bond is regarded as golden strength, resulting
in the unique properties of liquid water. Each water molecule has two own
hydrogen bonds and two further hydrogen bonds because the hydrogen atoms
attach to neighboring water molecules. These four hydrogen bonds optimally
arrange themselves in tetrahedral shape around each water molecule (Fig.
1.2). This tetrahedral structure is commonly found in the ice phase [64]. In
liquid water, due to stronger thermal fluctuations, the hydrogen bonds are
bent or even broken. However, the tetrahedral clustering is only local struc-
ture and reduces with rising temperature.

Liquid water concludes an assembly of short, straight and strong hydro-
gen bonding types and long, weak and bent hydrogen bonds with many some
medium types between these shapes [56]. In addition, the hydrogen bonds
are always broken and created for very short periods of time, leading to the
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distortion feature of liquid water. The mean lifetime of hydrogen bonding is
about 1 ps [123]. The hydrogen bond length of water depends on temperature
and pressure. All water molecules in liquid phase have at least one hydrogen
bond to surrounding water molecules. There are two different hypotheses
about the hydrogen-bonding of liquid water in science. Either a continuous
three-dimensional network with the hydrogen bonds more or less distorted
from their ideal three-dimensional structures is formed in water, or a mixture
of clusters of water molecules with different degrees of hydrogen-bonding in
equilibrium is present in the system. Both hypotheses are widely used for
explanation of the complicated properties of water [64].

1.4 Ionization

The strong polarization of water molecule creates hydrogen bonds which
are rather weak in comparison to almost covalent bonds and make the elec-
tron density around the hydrogen atom very low. The polarization of the wa-
ter molecule is further enforced by thermal oscillations with periodic about
20 µs. As a consequence, water molecules can be dissociated, creating free
protons H+e and anions OH−e (e is the electron charge). However, the re-
combination of the ions carrying opposite charges simultaneously also oc-
curs. These dissociated ions H+e and OH−e have quite long lifetime, approx-
imately 100 µs [74]. So, proton H+e can also couple with a surrounding
molecule, forming ion H3O

+e with its lifetime about 1 ps. Moreover, many
different events could take place before recombining ions. Because the life-
time of the H3O

+e is much smaller than that of the proton, each proton can
couple with some water molecules before recombination. The spontaneous
ionization of water is defined by the dissociation constant

KD =
[H+e] [OH−e]

[H2O]
= 1.82 10−16mol/L. (1.1)
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As water concentration is 55.6 mol/L, the concentration of ions H+e at 298 K

is 10−7mol/L, so the pH of pure liquid water is 7. The mobility of ions H+e

is higher than that of water molecules. Thus, the diffusion constant of ions,
9 10−9m2/s, is five times larger than that of water molecules (2 10−9m2/s).
Water can donate its H+e to a base or accept H+e from an acid, depending on
the circumstances. So, water behaves as either acid or base.

1.5 Dielectric constant of liquid water and aque-
ous solutions

1.5.1 Dielectric polarization

Dielectric constant or permittivity, a fundamental parameter of a material,
describes how an external electric field interacts with a dielectric medium.
Water is one of the liquids having the highest dielectric constant, about 80
times larger than that of a vacuum. To have a better understanding about the
features of the dielectric constant of liquid water, it in necessary to interest
in the permanent dipole moment of the water molecule, density, polarization,
and the interaction between dipoles [123]. The water dipole moment is quite
high in comparison with that of the other polar liquids. Because the size of
water molecules is quite small, the density of dipoles is rather high. With
small size, dipoles could easily and rapidly reorient in the direction of the
external field. Due to the hydrogen bond, the response of dipoles to external
field is a collective action. The temperature is higher and higher, the dielectric
constant of liquid water is smaller and smaller due to the increase in the
thermal fluctuations.

Naturally, water is never found in a pure state. Both groundwater and
surface water contain many constituents, including microorganisms, gases,
inorganic and free dissociated ions. It is noticeable that some salts can make
proper structure, such as NaCl, maintaining the collective response of parti-
cles [74]. Inversely, some salts can break the proper structure of water, such
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Fig. 1.3. Dielectric spectroscopy over a wide range of frequencies of liq-
uid water: ε

′
and ε

′′
are the real and the imaginary part of the permittivity,

respectively. Various processes are indicated on the image: ionic and dipo-
lar relaxations at low frequencies while atomic and electronic resonances at
higher frequencies [65] .

as the salt of CsI, increasing the mobility of water molecules as the salt is
added. The presence of dissociated ions makes the density of dipoles de-
cease, leading to the decrement in permittivity. Moreover, the local electric
field radiated by dissociated ions can affect the orientation polarization of
dipoles, leading to the change in the dielectric constant of the solution.

There are some different dielectric mechanisms, showing the ways that
the system responds to the applied field (see Fig. 1.3). Each dielectric mech-
anism happens in a specific frequency range, which is the reciprocal of the
characteristic time of the process. Dielectric relaxation can be divided into
two well-separated processes, including the relaxation at low frequencies,
from 102 ÷ 1010 Hz [39], and resonance in the high-frequency range, above
1012 Hz [47, 134]. In liquid water and electrolyte solutions, dielectric re-
laxations consist of the two separated processes, ionic relaxation and dipole
relaxation. Ionic relaxation composes ionic conductivity and relaxation re-
lated to the interface and space charge. Ionic conductivity is dominant at
low frequencies with the appearance of only the imaginary part in the com-
plex permittivity. Interface relaxation is originated from the trapping of the
charge carriers at the interfaces of heterogeneous systems. The Maxwell-
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Wagner-Sillars polarization, that the charge carriers blocked at inner dielec-
tric boundary layers or external electrodes makes charges separate, is consid-
ered as the ionic relaxation. The increase in the distance between the charges
makes the dielectric loss decrease at low frequencies. Dipole relaxation in
liquid water and electrolyte aqueous solutions originates from the alignment
of dipoles in the direction of the applied field. Their orientation polarization
is disturbed by thermal fluctuations and it is characterized by the relaxation
time that the dipoles need to relax. From these reasons, the dipole relaxation
strongly depends on temperature, pressure and chemical interaction with sur-
rounding molecules. The resonant relaxation includes atomic and electronic
resonances that are being in limited understood due to the restriction in ex-
perimental technique.

1.5.2 Dielectric spectroscopy

The dielectric dispersion of water and aqueous solutions is an interesting
topic that has attracted a great attention of both the experimental and theo-
retical works. It is carefully measured by various methods with continuously
improved technique, providing some surprised and interesting properties of
the dielectric spectrum. The frequency dependence of the complex permittiv-
ity can provide valuable insight into the dynamics of liquid water and similar
liquids. Information about dynamical structure, bonding between particles,
complex motion of particles, hydration could be extracted from the dielectric
relaxation data.

The dielectric spectrum of pure liquid water and aqueous solutions in the
wide range from 20 MHz to 100 GHz has been carefully measured [21, 46,
67, 76, 91, 99, 134]. The low-frequency relaxations at about ns is due to
tightly bound water, whereas fast high-frequency relaxations at about ps is
due to loosely bound water. It is noticed that the bulk water dielectric loss
spectrum can be divided into two underlying Gaussian peaks at 8 and 1 ps

arising from the rotations of fully and partially hydrogen bonded molecules,
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respectively [134]. It is also shown that long-range interactions with distance
about 0.1 mm are supported in liquid water [73]. Particularly, the fastest re-
laxation at frequency of 180 fs assigned to the fluctuations of single hydrogen
bonds for electrolyte solutions was observed. Investigation on the gigahertz-
to-terahertz dielectric relaxation spectroscopy of liquid water is being and
will be a hot and interesting matter. This range of dielectric spectroscopy
can provide a valuable window into water’s most rapid inter-molecular mo-
tions because it is sensitive to fluctuations happening over femtoseconds to
picoseconds. However, in order to point out the dielectric spectrum in this
region, it is necessary to use modern equipment and sophisticated techniques
such as vector network analysis technique with dielectric spectrometer.

1.5.3 Semi-empirical models for dielectric relaxation

Determining the dispersion of the complex permittivity can help us fur-
ther understand the dynamics of liquid water and aqueous solutions. In more
detail, important information about dynamical structure, the bonding between
particles, the complex motion of particles, and hydration could be revealed
from the dielectric relaxation. Several mathematical models have been de-
veloped and applied for macroscopic descriptions of the complex dielectric
permittivity in empirical works. According to the practical viewpoint, how-
ever, a single relaxation model is not sufficient. Thus, useful information
about dynamics and electrodynamics of liquid water systems could be pro-
vided more via combining of various models.

1.5.3.1 Debye equation

For a non-conducting system such as liquid water or similar liquids, the
polarization P combines with the electric field E via relationship [34]

P = ε0(εs − 1)E,
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where ε0 is the electric constant and εs is the static dielectric constant of the
system. The polarization P refers microscopic information about dynamics
of particles in the water[17, 77]

P = Pµ + Pα, (1.2)

in which Pµ and Pα are the orientation polarization of permanent dipoles in
the direction of electric field and the induced polarization concerning elec-
tronic or atomic polarization, respectively. Orientation polarization Pµ is
commonly observed in pico to nanosecond time scales (from 1 MHz to 10
THz), whereas Pα mostly remains constant in the microwave range, depend-
ing on the frequency in the higher frequency range. Polarization dispersion
Pµ could offer valuable insight into the dynamics of liquids while the fre-
quency dependence of the induced polarization Pα brings information about
the infra-molecular dynamics of the system. Due to the difference of re-
laxation time scale between the two mechanisms of polarization, both the
relaxation processes are generally well separated and can be considered to
be linearly independent between each other. Therefore, the orientation and
the induced polarization combine with the permittivity ε∞ at high frequency
(far-infrared) as following relations

Pµ = ε0(εs − ε∞)E (1.3)

and

Pα = ε0(ε∞ − 1)E. (1.4)

The time dependence of the orientation polarization Pµ(t) could be repre-
sented by its equilibrium values before occurring the rotational polarization
relaxation Pµ(0) and after, Pµ(∞), as

Pµ(t) = Pµ(0)F or
P (t), (1.5)
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where F or
P (t) denotes the step response function of the orientation polariza-

tion. It is given by

F or
P (t) =

Pµ(0)Pµ(t)

| Pµ(0) |2
. (1.6)

Because at the initial time all dipoles are in the direction of the field, i.e.F or
P (0) =

1. However, the dipoles is in the structure relaxation at the final moment,
leading to F or

P (t) = 0. With alternative electric field E(ω) = E0sin(−iωt)
(ω is the frequency), the orientation polarization of the system at any time t
can be in the form of

P(ω, t) = ε0(εs − ε∞)E(t)Liω(ω) (1.7)

where

Liω(ω) =

ˆ ∞
0

exp(−iωt′)f orP (t
′
)dt

′
, (1.8)

in which Liω(ω) is the Laplace-transformed pulse response function of the
orientation polarization. It can be considered as a function of f orP (t

′
). The

pulse response function f orP (t
′
) associates to the step response functionF or

P (t
′
)

via the relation

f orP (t
′
) = −∂F

or
P (t− t′)
∂(t− t′)

. (1.9)

Function f orP (t
′
) is normalized by

´∞
0 f orP (t

′
)dt

′
= 1. It is possible to express

the complex permittivity versus the frequency as the following function

ε(ω) = ε
′
(ω) + iε

′′
(ω) = ε∞ + (εs − ε∞)Liω(ω). (1.10)

The Debye’s original theory was given in 1929 in order to study a thermal
ensemble of non-interacting molecules applied in an applied electric field and
point out what happens in a liquid system when the field is turned off. A
specific dipole will take a characteristic time to reach the equilibrium state.
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The mean relaxation time of dipoles in the system is noted τ0. It is assumed
that the reduction of the orientation polarization in the absence of an external
electric field is directly proportional to the polarization itself, and the decay
of rotational polarization follows the first order as

∂

∂t
Pµ(t) =

1

τ0
Pµ(t). (1.11)

The solution of this equation is written by

Pµ(t) = P0exp(−
t

τ0
). (1.12)

The step response function is also defined F or
P (t) = exp(−t/τ0). It is able to

give the pulse response function f orP (t) = (1/τ0)exp(−t/τ0). Transforming
the pulse response function in Eq. (1.10) in the Fourier form, the complex
dielectric permittivity of the non-conducting liquids could be expressed as

ε(ω) = ε
′
(ω) + iε

′′
(ω) = ε∞ + (εs − ε∞)Liω[

i

τ0
exp(− t

τ0
)]. (1.13)

The Debye equation for the complex permittivity of the system takes the form
[34, 77]

ε(ω) = ε∞ +
εs − ε∞
1 + iωτ0

. (1.14)

The real and the imaginary parts of the complex permittivity are respectively

ε
′
(ω) = ε∞ +

εs − ε∞
1 + (ωτ0)2

, (1.15)

ε
′′
(ω) =

(εs − ε∞)ωτ0

1 + (ωτ0)2
. (1.16)

According to the ensemble of the short, straight and strong hydrogen
bonds besides the long, weak and bending hydrogen bonds with many in-
termediate types between the two kinds, there are some relaxation processes
of the dielectric spectrum at different frequencies. It is able to use the Debye
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model for describing dielectric relaxation not only for liquid water but also
for electrolyte solutions as the interaction between water molecules is not
significant [99]. Moreover, it can illuminate into the dynamics of the system
below terahertz frequencies.

0.1 1 10 100 1000
0

20

40

60

80

100

Frequency (GHz)

D
ie
le
c
tr
ic
c
o
n
s
ta
n
t

Fig. 1.4. The permittivity relaxation of NaCl solutions with concentration of
0.4 mol/L at 5 0C [21] based on the Debye equation with single relaxation
process. The dashed curve represents the real part, whereas the solid one
exhibits the imaginary component of the dielectric constant. The absorption
peak and the relaxation process are centered at the frequency about 13 GHz.

1.5.3.2 Models of non-Debye type relaxation

The deviation between the Debye Equation and experimental data emerges
in the range of high frequencies for liquid water or concentrated electrolyte
solutions due to the interaction among dipoles. It is thus necessary to improve
the original Debye equation by using an empirical relaxation time distribu-
tion [17], g(τ). The complex permittivity function is usually preferred in the
logarithmic representation of G(lnτ), written by

ε(ω) = ε∞ + (εs − ε∞)

ˆ ∞
0

G(lnτ)

1 + iωτ
d lnτ, (1.17)

with the normalization
´∞

0 G(lnτ)d lnτ = 1. Commonly, it is difficult to
obtain G(lnτ) through empirical works. Thus, empirical parameters are used
in order to account for the broadness and the shape of the relaxation time
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distribution function.
For a system with both the symmetric dispersion and the absorption of

the permittivity around principal relaxation time τ0, the Cole-Cole equation
[27, 28] is given by adding an empirical parameter 0 ≤ αD < 1 into the
original Debye equation

ε(ω) = ε∞ +
εs − ε∞

1 + (iωτ0)1−αD
. (1.18)

It is easy to see that the Cole-Cole equation turns into the Debye equation as
αD = 0.

As both dispersion and absorption curves of the permittivity around the
center of relaxation time τ0 are asymmetric, its relaxation could be described
by an equation called the Cole-Davidson one [30, 31] via using another fitting
parameter 0 < βD ≤ 1,

ε(ω) = ε∞ +
εs − ε∞

(1 + iωτ0)βD
. (1.19)

For βD = 1, the Cole-Davidson equation turns into the Debye equation.
In the case of broad asymmetric relaxation around the center of relaxation

time τ0, the dielectric relaxation of the system could be described by using
both the parameters αD and βD with 0 ≤ αD < 1 and 0 < βD ≤ 1, resulting
in the Havriliak-Negami equation [61]

ε(ω) = ε∞ +
εs − ε∞

[1 + (iωτ0)αD−1]βD
. (1.20)

1.5.4 Microscopic theories of permittivity relaxation

The semi-empirical models represented in the previous subsection could
only describe the complex permittivity spectrum at the macroscopic scale.
The information on the structure and dynamics of the liquid water or aqueous
systems could be revealed as the relation between macroscopic parameters
such as the permittivity, electric field intensity and microscopic parameters is
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established.

1.5.4.1 Onsager equation

Considering water and aqueous solutions as homogeneous mediums where
the specific interaction between dipoles is non-significant, Onsager given fol-
lowing relation for describing the response of a single dipole embedded in a
dielectric continuum medium ε at temperature T under the action of external
electric field E. The expression is in the form [92]

ε0 (ε− 1)E = El

∑
j=1

Nj

1− αjNj

(
αj +

1

kBT

µ2
j

1− αjfj

)
, (1.21)

whereNj is dipole density, αj is the polarizability, fj the reaction field factor,
and µj is the dipole moment of the jth dipolar species (kB is the Boltzmann
constant). Assuming that all dipoles are embedded in the medium with static
dielectric constant ε where the local electric field is El,

El =
3ε

2ε+ 1
E, (1.22)

Combining Equation (Eq.) (1.21) and Eq.(1.22), Onsager equation is given

ε0 (ε− 1) (2ε+ 1)

3ε
=
∑
j=1

Nj

1− αjNj

(
αj +

1

kBT

µ2
j

1− αjfj

)
. (1.23)

For a liquid such as pure water, that contains a single type of the dipole mo-
ment µ, Onsager equation is written in the simpler form

(ε− ε∞) (2ε+ ε∞)

ε(ε∞ + 2)2
=

N0µ
2

18ε0kBT
, (1.24)

in which N0 is the density of water molecular.
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1.5.4.2 Kirkwood-Fröhlich equation

In fact, the specific correlations between dipole-dipole has been widely
recognized. Therefore, it needs to have a subsequent modification for the
Onsager equation so that the information about micro-dynamics of the system
could be drawn out more precisely. As the interactions between neighboring
dipoles are taken into account, The Onsager equation is in a new form called
the Kirkwood-Fröhlich equation [44, 75]

(ε− ε∞) (2ε+ ε∞)

ε(ε∞ + 2)2
=

N0µ
2

18ε0kBT
gK , (1.25)

where gK is the Kirkwood factor, exhibiting the interactions among the par-
ticles. As gK > 1, neighboring molecules have a trend of parallel , whereas
gK < 1 the dipoles rotate with inverse tendency. Particularly, gK = 1, the
dipoles are in random rotation.

1.5.5 Static dielectric constant and dielectric constant at
low frequencies

Although there are various and reliable experimental data about permit-
tivity of pure liquid water and electrolyte solutions from 20 MHz to 100 GHz,
the data according to the low-frequency dielectric constant and the static one
are quite restricted and commonly non-reliable. The reason is that those data
used to be extrapolated from the dielectric spectroscopy at high frequencies
over 100 MHz via the semi-empirical models such as the Debye or the Cole-
Cole relations. It is impossible to believe that such extrapolation provides an
accurate value of the static dielectric or low-frequency permittivity. Instead
of extrapolation, it is better to directly measure. However, measuring the di-
electric constant of pure liquid water and aqueous solutions below a couple
of kHz is very complicated, mainly since electrode polarization [80] is quite
significant. In order to have reliable data of the dielectric constant at low fre-
quencies, it is necessary to use modern techniques for eliminating electrode
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polarization effect.
On the theoretical side, it is only able to apply microscopic theoretical

models of permittivity relaxation mentioned in the previous section for de-
scribing the dielectric relaxation as well as dynamical mechanisms in the
range from MHz to GHz. At present, the dynamical mechanism behind be-
havior of the static dielectric constant and the permittivity dispersion at low
frequencies of liquid water and aqueous solutions is still being a matter of
debate, needing further studies.

1.6 Diffusion motion in liquid water

Because the hydrogen bond between the water molecules in the liquid
phase is not strong enough, the water molecules only fluctuate around a fixed
position for a very short time about picosecond and then they jump to another
equilibrium position, called the diffusive motion. The microscopic diffusive
motion of water molecules is quite complicated, consisting of the reorien-
tation and the self-diffusion of individual water molecules. D. Laage and
J.T. Hynes [81] pointed out that water reorientation takes place with large-
amplitude angular jumps. It is the exchange of hydrogen bond acceptors
because of a minor contribution from the diffusive hydrogen-bond frame re-
orientation between these exchanges. The pathway of the water reorientation
is special: The rotation of water molecule makes its hydrogen bond with an
over coordinated first-shell neighbor break then to form an hydrogen bonding
with an under coordinated second-shell neighbor. Moreover, the hydrogen
bonding cleavage and the molecular reorientation occur not continuously and
concertedly.

The self-diffusion of water molecules is also complex and difficult to see
obviously. With extensive and high-quality quasi-elastic incoherent neutron
scattering technique [130], it was obtained that at short times, when not all of
the hydrogen bonds are broken, the motion of the proton can be described by
an over damped harmonic oscillator confined to a spherical surface around
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the oxygen atom with a characteristic relaxation time τ1, approximately 1 ps.
This relaxation time obeys Arrhenius equation

τr = τ 0
r exp

(
EA

kBT

)
, (1.26)

in which τ 0
r = 0.0485 ps, EA = 1.85 kCal/mol is the activation energy.

At the intermediate-time scale τj larger than τ 0
r , where the number of

hydrogen bonds broken is sufficient enough, the proton can then jump to the
nearest equilibrium position with an average distance jump of about L =

1.6 Å. This jump is random, concerning the motion of the water molecule
as a whole. Jump relaxation time τj strongly depends on temperature and
doesn’t satisfy with the Arrhenius equation. The average jump distance L is
a function of temperature, decreasing with rising temperature.

1.7 Plasmon frequency of pure liquid water

Water molecule is polar due to the fact that the oxygen atom bears a
slightly negative charge −2δ and the hydrogen end has a slightly positive
one +δ. It is reasonable to say that liquid water is a plasma consisting of
H+δ cations and O−2δ anions. The hydrogen bonding is quite stable dur-
ing the process of thermal motions, leading to the collective action of water
molecules. Water plasmon can be considered as a quasi-particle arisen from
the quantization of dipole oscillations.

In order to determine the water plasmon frequency, it is better to use
jellium theory [5]. Jellium is a quantum mechanical model describing the
interaction between free electrons in a solid where the atomic nuclei are con-
sidered to be uniformly located while the electron density homogeneously
distributes in whole space. This theory supports to focus on the effects oc-
curring in the system related to the quantum nature of free electrons and
their mutual repulsion without introduction in detail of the crystal structure
of a real material. Due to the diffusive motion of particles, the microscopic
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structure of liquid water always changes. Using jellium theory could avoid
the complication in the calculation process arisen from the chaotic motion of
particles.

Suppose that the mass of cations O−2δ is mO and the mass of the anions
H+δ is noted mH . The change in the charge density is the function of the
displacement vector v for oxygen anions O−2δ and u for hydrogen cations
H+δ, respectively. All charged particles in liquid water interact between each
other via the Coulomb force. The Coulomb potentials are represented by
ϕOO = 4ϕ(Q), ϕHH(Q) = ϕ(Q), and ϕOH = −2ϕ(Q) in which ϕ(Q) =

4πδ2/Q2 (Q is the wave vector). The interactions can be written in more
detail as

UOO = −N0

2

∑
QQ

2 [4ϕ(Q) + χ(Q)]ϕ(Q)v(Q)v(−Q),

UOH = −2N0

∑
QQ

2 [ϕ(Q) + χ(Q)]ϕ(Q)v(Q)u(−Q),

UHH = N0

∑
QQ

2 [2ϕ(Q)− χ(Q)]− ϕ(Q)]u1(Q)u2(−Q),

(1.27)

where χ(q) is the Fourier transformation. The kinetic energy of the system is
defined in the form

Ts = −1

2
mO

∑
Q

u̇1(Q)u̇1(−Q)−mH

∑
Q

u̇2(Q)u̇2(−Q). (1.28)

The motion equation of oxygen cations and hydrogen anions are respectively
written by

mO
˙̈v(Q) +N0Q

2[4ϕ(Q) + χ(Q)]v(Q)− 2N0Q
2[2ϕ(Q)− χ(Q)]u(Q) = 0

mH
˙̈u(Q) + 2N0Q

2[ϕ(Q) + χ(Q)]u(Q)−N0Q
2[2ϕ(Q)− χ(Q)]v(Q) = 0.

(1.29)
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The solutions of these equations as Q→ 0 is given

ω2
pw =

N0δ
2

ε0
(

1

2mH
+

1

mO
), (1.30)

called the water plasmon frequency. According to the calculation, its value is
about of 1012 Hz where δ ≈ 0.01e.

Charge particles in oscillation may radiate a local EM field. The local
EM field can couple with collective density oscillations, leading to compli-
cated phenomena. Applying plasma, plasmon, PP theories to further inves-
tigate electrodynamics in liquid water may be an interesting topic for future
researches.

Chapter Summary
Water is a special material possessing many unusual properties that

are not found in the other liquid materials. Hydrogen bonds between water
molecules in different forms and strengths also make water dynamics differ
from that of the other liquids and complicated.

The dielectric spectrum was presented with many interesting and surpris-
ing properties, providing available data and releasing important information
about molecular structure, the microscopic mechanism of several phenom-
ena. A large number of semi-experimental models and theoretical models
have been developed, describing the dielectric dispersion and illuminating its
mechanism with significant achievement. It is necessary to assess the believe
level of the available empirical data through theoretical approaches. How-
ever, there is being lacking a theoretical model that interprets the dielectric
dispersion of pure liquid water at low frequencies.

The hydrogen bonding network makes the response of particles in pure
liquid water act collectively in the periodic fashion in the high enough fre-
quency range. The interaction between collective density wave and EM wave
could happen in the system. This viewpoint could also inspire to explore and
illuminate some complicated microdynamic behaviors of liquid water that are
being in the process of controversy.
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Chapter 2

SOME DYNAMIC FEATURES OF LIQUID WATER

Dynamical phenomena happening in the system are commonly in rela-
tion to the characteristic of the hydrogen bonding network. In order to well
understand microdynamic behaviors of liquid water, it is necessary to have
a good understanding about the making and breaking of hydrogen bonding,
diffusive motion, molecular structure, and the interaction between particles.
The dynamics of liquid water has attracted a great deal of attention because it
is the prototype of a hydrogen-bonding network. Collective dynamics of wa-
ter on the energy scale of 5−30 meV are quite sensitive to hydrogen-bonding
network properties [87]. In more details, the collective excitations in liquid
water observed at 5 or 6 meV is currently attributed to the intermolecular
O−O−O bending because it is very intense in neutron scattering and very
weak in other spectroscopic techniques [112]. Thus, researches on the dy-
namics of liquid water in the spectral range of 5 − 30 meV could provide
insights into intermolecular vibrations and further understand some micrody-
namical behaviors in living cells [93, 113] as well as, possibly, in the other
similar liquid systems. Moreover, the important information about particle
diffusion, internal structure changes of water molecules, hydrogen-bonding
network transformations [111] could be revealed.

In addition, water dielectric constant is an important dynamic parameter
with anomalous properties. A thorough understanding about water dielectric
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constant allows us to know dynamical mechanism in relation to the compli-
cated dynamics of living systems. It is noticeable that the transport of ions
occurs at approximately 1 kHz during cell functioning [85]. Therefore, a
thorough comprehension about the dielectric properties of liquid water in the
low-frequency regime is essential for a more accurate description about elec-
trodynamics at the molecular level of macro biomolecules such as electroki-
netic phenomena [143]. It is also useful to gain a deeper insight into dielectric
properties of biological tissues [80], for example, the α−dispersion and the
β−dispersion.

In this chapter, a theoretical model named modified PP model is built
to quantitatively describe the dispersion of collective density oscillations in
liquid water at high frequencies with the fast and the normal sound modes.
The spectral range and the wave vector region, where the modified PP model
is suitable to represent the collective density fluctuations of liquid water in
the glass-like regime, are pointed out. The transformation from the hydro-
dynamic to the glass-like regime at a high enough frequency are shown and
interpreted. The terahertz dielectric response, the speeds of phase and group
for both the modes in the spectrum of collective density fluctuations are also
estimated. In addition, a simple model is provided for interpreting the disper-
sion of low-frequency dielectric constant of liquid water with two separated
arguments. The mechanism responsible for the existence of the isopermit-
tive point is also highlighted under the view from the basis of dynamics as
well as thermodynamics. The changes in enthalpy and Gibbs free energy are
estimated, using van’t Hoff equation, for the water system in the thermody-
namical equilibrium.

2.1 Phonon-polariton theory for semiconductors

Phonon is widely known as a quasi-particle, representing collective exci-
tation propagating in solid materials with a periodic and an elastic arrange-
ment of particles. The concept of phonons was introduced in 1932 by I.
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Tamm, a Soviet physicist. Phonons are in relation to the physical behaviors
of condensed matter like the phenomena of thermal conductivity and electri-
cal conductivity.

In classical mechanics, phonons have particle-like characteristics too, in a
way related to the wave-particle duality of quantum mechanics. For a crystal
with at least two atoms in its primitive cell, there are two types of phonons,
optical phonons and acoustic phonons. It is noticeable that sound waves in
fluids only have longitudinal components because shear stresses aren’t sup-
ported in common fluids, whereas there are both the longitudinal and trans-
verse components in solids. Moreover, only optical phonons can interact
with electromagnetic radiation, resulting in a new quasiparticle called PP.
The spectrum range of PPs is in order of meV. The study of phonons and PPs
is an important part of condensed matter physics because they involve in the
propagation of mechanical waves inside matters as well as their property of
thermal conductivity. Moreover, phonon and PP theories have been applied
for investigation on liquid thermodynamics liquids [46, 132].

It is able to start the work by reviewing the behavior of a system with the
same harmonic oscillators to a radiation field in the form of the plane wave.
Suppose that these simple harmonic vibrations with natural frequency ωTO

are isotropic and homogeneously distributed in the entire space. For a plane
wave according to the wave vector Q in the absence of free charges in the
system, the response of the system to the radiation field with frequency ω
must obey Gauss equation [95]

∇D = 0, (2.1)

where D is the dielectric displacement vector. This equation is equivalent to
the following expression

ε(ω)QE = 0, (2.2)

where E is the electrical vector, This equation has two different solutions: the
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first one describes the Longitudinal Optical (LO) mode with the longitudinal
resonance frequency ωLO and the second one corresponds to the Transverse
Optical (TO) mode with transverse resonance frequency ωTO.

Fig. 2.1. Dispersion of PPs ~ω±(Q) for CsI with ~ωLO = 10.6 meV, ~ωTO =
7.9 meV, and ε∞ = 3 [66] versus wave vector Q: upper solid curve for
the upper transverse PPs and lower one for the lower transverse PPs. The
polariton gap is centered from ~ωTO to ~ωLO.

In the above discussion, it is neglected the radiation generated by the
macroscopic polarization of particles in the material. A more entire descrip-
tion of the interaction between electromagnetic radiation and particles tak-
ing would be obtained if their polarization is taken into account based on
Maxwell’s equations [95]. As far as we know that EM waves are transverse,
they just can couple to transverse excitations, for example, TO phonons, but
not to LO phonons. Eq. (2.1) is only one of these equations. Incorporat-
ing remaining three Maxwell’s equations with this equation, the dispersion
relation of PPs can be written as

Q2(ω) =
ω

2

c2
0

ε(ω), (2.3)

where c0 is the speed of photons in a vacuum. Notice that the dielectric
function of material is defined by the expression

ε(ω) = ε∞
ω2
LO − ω2

ω2
TO − ω2

. (2.4)
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Substituting Eq. (2.4) into the Eq. (2.3), the dispersion relations of PPs
ω±(Q), ω+(Q) for the upper transverse polariton and ω−(Q) for the lower
one, are given and written in double explicit relationships

ω2
±(Q) =

1

2
{ c

2
0

ε∞
Q2 + ω2

LO ± [(
c2

0

ε∞
Q2 + ω2

LO)2 − 4
c2

0

ε∞
Q2ω2

TO]1/2}. (2.5)

The dispersion of PPs is illustrated by Fig. 2.1. It is clear to see that
the upper branch (upper solid curve) approaches to the longitudinal resonant
frequency ~ωLO (solid horizontal line), ~ is the Planck’s constant, as the wave
vector Q → 0. Moreover, it linearly disperses in the high-frequency range
and approaches to the line defined by ~cQ/√ε∞ (dashed line) corresponding
to the dispersion relation of photons in the material when the TO phonons
are not present. The lower transverse polariton (lower solid curve) is almost
dispersionless in the range of large-Q value and asymptotically tends to the
transverse resonance frequency ~ωTO corresponding to the dotted horizontal
line. However, in the opposite limit Q → 0, it is a linear function of the
wave vector, i.e., ~ω−(Q) = ~cQ/√ε0 (dot-dashed line) in which ε0 is the
dielectric constant at low frequencies. Since the dielectric function is positive
as the frequency is either less than ωTO or more than ωLO, the electromagnetic
wave can propagate in the material. Nevertheless, in the region of frequency
from ωTO to ωLO called polariton gap, the dielectric response is negative, so
the material does not support the propagation of the electromagnetic wave in
this spectrum region due to its exponential decrease. In addition ωLO relates
to ωTO through the well-known Lyddane- Sachs-Teller relation

ωLO = ωTO

√
ε0

ε∞
. (2.6)

The dispersion of photons propagating in a homogeneous crystal is given
by the dashed line in Fig. 2.1, according to the function ~cQ/√ε∞, if the
TO phonons are not present. Moreover, the dispersion of TO phonons will be
illustrated in the same figure by a dotted horizontal line passing through ~ωTO
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in the absence of the coupling between TO phonons and photons. At the
point where these two lines intersect, the coupling between each other takes
place. The reason for their coupling is that the TO phonons could be excited
by EM waves while electromagnetic waves could be radiated by vibrating
charges. Consequently, the coupling between each other leads to the change
in the frequencies of both modes: one is increased while the other is lower,
expressing in terms of Eq. (2.5). In other words, it seems that they “repel”
each other.

It is noted that polariton theory normally applies as the wavelength of
the light is much larger than the lattice constant of crystal materials. The
theory, well known in solid-state physics, is mostly applied to semiconductors
and rarely used for liquids. Currently, studying polariton attracts a much
attention with a large number of experimental and theoretical works. Indeed,
the frequency spectra of PP is from hundreds of gigahertz to several terahertz,
i.e., between electronic and photonics ranges [95]. There is no doubt that
polaritonics plays an important role, enabling advanced signal processing and
spectroscopy application, for example, observation of polariton condensation
at ambient condition, quantized vortices, stimulates scattering, and superfluid
response.

2.2 Modified phonon-polariton model for collec-
tive density oscillations in liquid water

In typical liquids, the system is to be disordered and atoms move in dif-
fusion. So, there is no underlying order or crystal structure. Each particle
is located at an equilibrium position for a short time before jumping to an-
other quasi-equilibrium position. However, the diffusion movement of par-
ticles only occurs in the liquid water and similar liquids as the time is large
enough, about of picoseconds. The hydrogen-bonding network of the system
cannot rearrange itself at high enough frequencies. In addition, the hydrogen-
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bonding network of liquid water is very close to that of its glassy phase under
normal conditions. Therefore, dynamic behaviors of liquid water could be as
the same as those in its glass phase at high frequencies. It means that phonons
could be supported in liquid water, propagating along the hydrogen-bonding
network.

Dynamics of liquid water at high frequencies is perhaps controlled by the
structural relaxation involved in the forming and the breaking of the hydro-
gen bonds with characteristic time τF in which Frenkel frequency is deter-
mined by ωF = 1/τF . As the collective density oscillations with the fre-
quency Ω > ωF , neither the making nor the breaking of the hydrogen bonds
could take place [58, 89]. Dynamic features of liquid water thus are anal-
ogous to those in its glassy phase. This point of view has ever been men-
tioned by Frenkel [46, 132]. It is possible to use the phonon and PP theories,
which are commonly applied for studying the behavior of solid materials
with periodic microscopic structure, to treat dynamics of liquid water in the
range of high frequency. Inversely, for collective oscillations with frequency
Ω < ωF , the system exhibits disordered characteristic due to the diffusion
motion. Therefore, the phonon isn’t supported in liquid water at low fre-
quencies. K. Trachenko and V. Brazhkin have ever used the terms “collective
modes” and “phonons” interchangeably for studying liquid dynamics and the
phonon theory has been applied for investigation on liquid thermodynamics
[132]. Recently, Daniel Elton and Marivi Fernandez-Serra have indicated
that collective density vibrations or phonons can travel in liquid water, just as
they propagate through the hydrogen-bonding network of ice [41].

Note that the reorientation relaxation time of water molecules follows the
well-known Arrhenius function of temperature, about 1 ps at room tempera-
ture [77, 130]. Moreover, the self-diffusion relaxation time reduces with the
increase in temperature and its value is in the picosecond time scale [130].
Because relaxation time τF directly associates with the reorientation relax-
ation time and the self-diffusion relaxation time of water molecules, τF is
also in the order of picoseconds and reduces with the rising temperature.
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Therefore, it is easy to see that the Frenkel frequency depends strongly on
temperature.

When either incident photons or neutron beam with high energy are brought
into interaction with the liquid water, the interaction between high energy ex-
citations (photons of X-ray or neutrons with high velocity) and water molecules
leads to the appearance of phonons or collective density oscillations travel-
ing on the hydrogen-bonding network. As the energy of the excitations is
not high enough, the frequency of collective density vibrations is lower than
ωF , the structural relaxation can take place with the rearrangement of the
hydrogen-bonding network related to the reorientation of individual water
molecules and their self-diffusion. As a result, only the longitudinal mode is
supported. In the opposite limit, with high enough energy excitations, the fre-
quency of phonons is higher than ωF , the liquid water seems to be in the glass
regime due to the absence of the rearrangement of the hydrogen-bonding net-
work. Therefore, the transverse mode is supported. It is noticeable that water
molecules are dipoles. It is reasonable to consider water as a plasma. The
plasmon frequency of pure liquid water was estimated, about 1012 Hz [5].
The moving of dipoles in the system due to the propagation of collective
density oscillations could radiate a local EM field with frequency in the do-
main of THz whose wavelength is approximate 10 µm. The coupling of the
traverse mode with the local EM field whose wavelength is much larger than
the intermolecular distance (about 2.8 Å [5]) leads to the appearance of the
high-energy mode and the low-energy one traveling in liquid water, similar to
that taking place in semiconductor materials. Thus, the dispersion relations
of both the collective density oscillation modes Ω±(Q) for liquid water take
the same forms given by Eq. (2.5)

Ω2
±(Q) =

1

2
{ c

2
0

ε∞1
Q2 + ω2

L1 ± [(
c2

0

ε∞1
Q2 + ω2

L1)
2 − 4

c2
0

ε∞1
Q2ω2

T1]
1/2} (2.7)

where ε∞1 is the dielectric response of liquid water at high frequency (in
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the domain of THz), ωL1 and ωT1 are the longitudinal and the transverse
resonance frequencies of collective density vibrations in liquid water, respec-
tively. However, a subsequent correction related to the reorientation and the
self-diffusion of water molecules need considering when the PP theory is ap-
plied for studying the collective modes with high frequencies in liquid water.

The model is based on the idea that the interaction of excitations with high
energy such as either photons or neutrons with water molecules could create
transverse collective density oscillations or traverse phonons above Frenkel
frequency traveling in the system. The coupling between the traverse collec-
tive mode and the local field radiated by dipoles leads to the appearance of
the high- and the low- frequency modes traveling along the hydrogen-bond
network with velocity vs and vf , respectively. This point of view is a bit sim-
ilar to that of the two-mode interaction model. However, the absence of the
coupling coefficient between each other in the two dispersion relations makes
the modified PP model different from the two-mode interaction one.With a
subsequent consideration due to the reorientation and the self-diffusion of
water molecules, we pointed out that both the relations in the model are only
suitable to describe the dispersion of two modes from Frenkel frequency to
Debye frequency, resembling the viewpoint in the viscoelastic model.The
hydrodynamic behavior caused from diffusive jumps and the reorientation of
particles is also examined to define the region of wave vector in which the
model is suitable to apply. The modified PP model does not only present the
dispersion feature of the lower and the upper modes, but also allow us to fur-
ther understand the temperature dependence of the spectral width. It is not
a phenomenological model because it is proposed on the theoretical basis of
PP for crystals.

2.3 Dispersion of the two modes in liquid water

According to the relationships (2.7), in the low-Q limit, it can see that
upper branch Ω+(Q) tends to ωL1 while the lower branch is a linear function
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of wave vector Q given as following form

Ω−(Q) = vsQ. (2.8)

As Q → ∞, the lower branch Ω−(Q) reaches to ωT1 whereas the other de-
pends linearly on the wave vector, written by

Ω+(Q) = vfQ, (2.9)

where vf is the speed of the fast sound. It is clear that the dispersion property
of the collective vibration modes in liquid water displayed by the modified
PP model is in accordance with that observed by empirical works: the first
branch linearly disperses with the momentum and the other doesn’t disperse
at the high wave vectors. Combining the two expressions in Eq. (2.7) with
the empirical data of IXS [110] and INS [98, 110] of water at air pressure
and room temperature in which ωL1 = 6.8 meV, ωT1 = 5.6 meV, and
~v f = 20 meV/Å−1 (vf ≈ 3050 m/s), an agreement between theory and
experiment is quite good (Fig. 2.2) although only triple experimental param-
eters are inputted. It is interesting to see that the ratio of vf/vs ≈ 2 automat-
ically obtained in our model, in similarity with that confirmed in numerous
works.

As the energy of X-ray or neutron beam is low, the interaction between the
high excitations and water molecules could result in only the longitudinal col-
lective mode with frequency Ω(Q) < ωF traveling on the hydrogen-bonding
network. The collective density oscillations of dipoles can still produce the
local electromagnetic field, but it cannot combine with the longitudinal mode
in this situation. As a consequence, at low frequencies, only the longitudinal
mode with velocity of vs ≈ 1500 m/s is seen at normal condition and its
dispersion is linear like a common sound wave (dashed line in Fig. 2.2) in
the range of wave vector Q < QF ≈ 0.4 Å−1 (QF - the wave vector corre-
sponding to Frenkel frequency) [121, 129]. On the contrary, for the photons
or neutrons with high enough energy, the traverse collective density oscilla-
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Fig. 2.2. Dispersion of the collective density oscillations in liquid water ob-
tained by the modified PP model versus wave vector Q: the upper solid curve
for the high-energy mode and the lower one for the low-energy one. The
dot-dashed line illustrates the dispersion of the transverse phonons with fre-
quency ωT1. The diamond symbols display the data of IXS [110] and the
circle symbols correspond to the data from INS [98, 110].

tions with frequency Ω(Q) ≥ ωF is appeared in liquid water. In the absence
of the local EM field, the dispersion of the traverse phonons in liquid water
will be illustrated by the horizontal dot-dashed line passing through ~ωT1 in
Fig. 2.2. The dispersion of the local electromagnetic field created from the
collective density fluctuations is represented by the dotted line in Fig. 2.2
in the absence of its coupling with the traverse collective mode. Because
the traverse collective density oscillation mode could be excited by the local
EM wave whereas the local EM wave could be radiated by dipole vibrations,
the coupling between them could be occurred, leading to the change in the
frequencies of both the modes described by Eq. (2.7). At large wave vec-
tors, Ω−(Q) approaches to ωT1, displaying dispersion feature like the traverse
phonons. In the opposite limit, for Q → 0, the dispersion characteristic of
the lower branch is analogous to that of ordinary sound waves propagating
with speed vs. The high-frequency collective mode exhibits the dispersion
behavior as that of photons and travels with the velocity vf in the region of
large wave vectors, but it manifests the dispersion like traverse phonons in the
low- Q limit. It is clear that there is a correlation between electrodynamics
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and collective density oscillation phenomenon: a pressure wave could pro-
duce an alternating electric field and vice versa. The point of view about the
electro-acoustic coupling effect in the spectral range of 0 − 30 meV in pure
liquid water has ever been mentioned in Ref. [120].

It is interesting that the polariton gap in the collective density oscillation
spectrum of liquid water is pointed out by modified PP model, from ωT1

to ωL1, where the dielectric response is negative. It is remarkable that this
band is quite narrow, ∆ωg ≈ 1.2 meV at normal condition, leading to a
bit difficult to observe this gap. However, the existence of the polariton gap
is well-supported by the empirical data of INS [110] with high resolution
(1.5 meV) and IXS [122] data at about room temperature and air pressure as
shown by Fig. 2.2.

In the glass-like regime, the propagation length d of the collective density
mode with vf given by the equation d = vf/Ω+(q) [40]. Both the collec-
tive modes could travel in the system as the propagation length d is larger
than the intermolecular spacing s. When d = s, Ω+(Q) = ωD correspond-
ing to the wave vector QD (ωD and QD named the Debye frequency and the
Debye wave vector, respectively). According to the above discussion, the
spectrum of both the modes is from ωF to ωD. The width of this spectrum
might change with the temperature shift because of the temperature depen-
dence of the Frenkel frequency. Indeed, rising temperature at a fixed pressure
leads to the decrease in the relaxation time τF , resulting in the increase in
Frenkel frequency. Thus, the number of transverse modes propagating above
the frequency ωF decreases with the increase in temperature. It is interest-
ing that the minimal value of the relaxation time is about 0.1 ps [11] at high
temperature. Therefore, the maximum value of the Frenkel frequency could
be estimated, approximately 40 meV. If the temperature reaches to a critical
temperature noted Tc, ωF = ωD, the transverse mode might be absent even
at high enough frequencies in the liquid water because water molecules start
moving diffusely as a movement in gas-like regime. As a consequence, both
the modes won’t be seen in liquid water above Tc. Inversely, below Tc where
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ωF < ωD, both the modes are present whose dispersion is satisfied with the
modified PP mode, whereas the ratio of vf/vs and the value of ωL1 could
change with the alternation of pressure and temperature.

Experimental evidences pointed out that the solid-like dispersion response
of collective oscillation modes in a large number of liquids is only sustained
up to the largest value QD corresponding to the average distance of inter-
atomic separation [132]. In our opinion, it is not exceptional for liquid water.
Indeed, if the wavelength of collective oscillation modes is larger than the
mean intermolecular separation, i.e., from QF tor QD (about from 0.4 Å−1

to 1.2 Å−1 at room temperature), the system can be visualized as a homo-
geneous medium. Hence, the dispersion characteristic of both the modes is
similar to that in the glass-like regime, satisfying the dispersion relations Eq.
(2.7). However, in the opposite limit Q > QD, i.e., the wavelength of waves
is comparable to or smaller than the mean inter-particle separation, the col-
lective oscillations could feel structural in-homogeneity due to the disorder
of the system. In this situation, the self-diffusion and the reorientation of
particles have a significant impact on their dispersion property, resulting in
the change in the dispersion response of the upper mode. Possibly, for those
reasons, the linear dispersion of the high-energy mode in the range of large
wave vector becomes non linear as observations in the molecular dynamics
simulation work [115] and the IXS research [101]. In brief, the modified PP
model is only suitable to describe the dispersion of collective density oscilla-
tions of liquid water at a fixed temperature and pressure in the range of wave
vector from QF to QD.

Keep in mind that the lower the temperature, the lower the Frenkel fre-
quency. Moreover, ωF is the lowest frequency in the spectrum of water dy-
namics in the glass-like regime, i.e., ωF = vsQF . Because the reduction
of vs is insignificant with the decrease in temperature, the value of QF will
strongly reduce, in line with observation reported in the experimental work
of IUS [116].
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2.4 The regime transformation of the dynamics
of liquid water at the onset point

Since the system of liquid water behaves in the hydrodynamic regime be-
low Frenkel frequency, only the longitudinal mode could travel in the system
with speed vh whose dispersion is described in term of a linear function vhQ.
The reason is that the local structures have sufficient time to relax and there-
fore show a typical liquid behavior at low frequencies. However, the system
supports the shear dynamics from the Frenkel frequency with velocity vs at
lower frequencies and vf ≈ 2vs at higher frequencies. At the onset point
corresponding to the Frenkel frequency where both the modes start appear-
ing in the system, because the propagation of the collective excitations with
high enough frequencies, neither reorientation of individual water molecules
nor their self-diffusion could take place in the local area of the system. As a
result, the system behaves in the glass-like regime. It means that the transfor-
mation from the hydrodynamic to the glass-like regime is actually driven by
the structural relaxation process like the viewpoint of the viscoelastic model.

The system does not support the transverse dynamics below the Frenkel
frequency because it is a flowing liquid. As a result, the shear modulus is
not also supported, i.e. Gm = 0. Only the hydrodynamic wave travels in the
system whose speed vh combines with the bulk modulus Km and the water
density ρd by the following relation

vh =

√
Km

ρd
. (2.10)

In contrast, in the glass-like regime, both transverse collective density os-
cillation modes are supported, leading to the presence of the low and the
high-frequency moduli. As far we know, the speed of the shear mode at low
frequency is related to the shear modulus Gm by
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vs =

√
Gm

ρd
. (2.11)

Similarly, the speed of the high-energy collective oscillations is related to the
high-frequency shear modulus Mm by the relationship

vf =

√
Mm

ρd
. (2.12)

The emergence of such shear moduli in the glass-like regime at high enough
frequencies instead of the bulk modulus in the hydrodynamic regime at low
frequencies displays the regime transformation of dynamics of liquid water.

Some dynamic parameters of liquid water in the glass-like regime could
be given in this work, too. According to the reported experimental data in
which ρd ≈ 1 g/cm3, vh ≈ 1500 m/s, vs ≈ 1500 m/s and vf ≈ 3050 m/s

at condition of 200 C and air pressure [101], the value of the bulk and the
shear moduli of liquid water at THz is also estimated by Eqs. (2.10), (2.11)
and (2.12), for example, Km ≈ Gm ≈ 2.24 GPa and Mm ≈ 8.96 GPa,
in line with empirical observations and the other reported computations [63,
97, 108]. In addition, the bulk modulus combines with the volume viscosity
by the Maxwell relationship ηv = Kmτv in which τv is the relaxation time
of the system in the hydrodynamic regime. Analogously, the shear viscosity
coefficients at low and high frequency combine with the relaxation time τF
by ηs = GmτF and ηf = MmτF , respectively. At room conditions, it is
often found τv ≈ τF ≈ 1 ps [29, 63], both the shear viscosity coefficients
of liquid water are estimated ηs ≈ ηv ≈ 2.24 mPa.s and ηf ≈ 8.96 mPa.s,
quite close to the data in Ref. [89, 101]. In comparison to the hydrodynamic
regime, the appearance of the shear viscosity coefficients also implies the
regime transition of dynamics at the onset point.s
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2.5 Correlation between ultrasonic vibration po-
tential and collective density oscillations

2.5.1 Ultrasonic vibration potential

Ultrasonic vibration potential is a concept firstly proposed by P. Debye
[35]. When sound waves propagate through a solution containing charged
particles such as ionic solution, poly-electrolyte or colloidal fluid, the charge
distribution around those particles is periodically distorted, creating alternat-
ing dipoles at the sites of individual particles. Hence, the ultrasonic vibration
potential is generated as a result of the interaction between ultrasonic waves
and those solutions.

Hunter and his coworkers have ever predicted that pure liquid water might
also generate the ultrasonic vibration potential like solutions containing charged
particles [68] and a phenomenological theoretical model for polar liquids
has been subsequently given by Weinman [132]. Recently the ultrasonic
vibration potential of liquid water, which characterizes the conversion of a
mass density wave into an electric alternative potential, has been observed
by simulation technique [139]. At 300K and air pressure, its value is about
1 mV/(m/s) in the region of terahertz frequency and below 10 nm−1 of
the wave vector, where both the density oscillation modes mentioned in this
work are present. It is remarkable that the ultrasonic vibration potential in
this spectrum region is quite high in comparison to that in the others. Thus, a
further investigation on the correlation between electrodynamics and the col-
lective density oscillation phenomena in liquid water at terahertz frequency
is necessary.

2.5.2 Electro-acoustic correlation in liquid water

According to the relationship (2.9), we have vf = c0/
√
ε∞1, implying a

coupling between electrodynamics and the collective density oscillation phe-
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nomenon. Hence, the dielectric constant of liquid water at high frequency
can be given by the model ε∞1 = c2

0/v
2
f . Analogously, the dielectric constant

ε01 of water at low frequencies in the spectrum of PP in the same condition
could be calculated through the Lyddane-Sachs-Teller relation (2.6). Specif-
ically, at room temperature and air pressure as mentioned above, we have
ε∞1 ≈ 5.46 at higher frequency (approximately 5 THz) and ε01 ≈ 8.05 at
lower frequency in the spectrum of PP (approximately 1 THz), an expected
result. Both the values of ε∞1 and ε01 obtained in this work are in line with
experimental data [49, 134]. In addition, the tendency of decrease in the di-
electric constant with rising frequency in the terahertz range is also displayed,
satisfying the Debye model for dielectric constant.

The frequency dependence of the dielectric constant could be understood
through analyzing the change in polarization property of water molecules
when the collective density oscillation wave propagates along the hydrogen-
bonding network. In fact, a water molecule is a polar one. When the col-
lective density fluctuations with terahertz frequency travel, the distribution
of electrons around hydrogen and oxygen atoms in the system is periodi-
cally distorted, resulting in the change of polarization characteristic of water
molecules. Consequently, an alternative density vibration potential or ultra-
sonic potential is generated in liquid water. The higher the value of ultra-
sonic vibration potential is, the stronger the polarization of water molecules
becomes. It is equivalent to that the ultrasonic vibration potential is higher
and higher, the dielectric response of water is also higher and higher. Accord-
ing to the dispersion response of the ultrasonic vibration potential of water at
terahertz frequencies reported in Ref. [120], the ultrasonic vibration poten-
tial increases with the decrease in frequency. Thus, the dielectric response of
liquid water at fixed temperature and pressure increases with the decrease in
frequency. The correlation between the collective density dynamics and the
electrodynamics mentioned in this work might open new perspectives to ex-
plain some complex biological phenomena in systems of the organism where
liquid water is the main and the most important component.
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2.6 Phase and group velocities of collective den-
sity oscillations in liquid water

Recently, the collective density fluctuation phenomenon emerged from
the hydration water of biomolecules have observed via coherent neutron scat-
tering experiments [93, 113]. The collective dynamics of biological hydration
water are quite similar to that of pure liquid water. It means that the dynamic
behaviors of pure liquid water seem to be common for all biological sys-
tems. Determining the phase and the group velocities of collective density
oscillations in liquid water permits to further understand the propagation of
biological signals in living systems.

Fig. 2.3. Phase and group speeds of collective density oscillations in liquid
water: vgf(Q) (dashed curve) and vpf(Q) (dotted curve) corresponding to
the group and the phase speeds, respectively, for the high-frequency mode in
liquid water are in contrast with the wave vector Q. The dot-dashed and the
solid curves represent the wave vector dependence of vgs(Q) and vps(Q) for
the low-frequency mode, respectively.

The group and phase velocity corresponding to the high-energy mode of
collective density oscillations could be defined from the quantitative relation-
ship given by the modified PP model. Indeed, for the fast mode the group
velocity vgf(Q) = dΩ+(Q)/dQ and the phase speed vpf(Q) = Ω+(Q)/Q

(dashed and dotted branches in Fig. 2.3, respectively). It is explicit that both
the speeds of the high-frequency mode take the same value in a wide region of
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large wave vectors vgf(Q) = vpf(Q)≈ 3050 m/s at room conditions. Com-
monly, the group velocity is seen as the speed with which energy or informa-
tion is transported along a wave. Since the group velocity is exactly equal to
the phase velocity for the fast mode in the range of large wave vector, a wave
of any shape will travel without distortion at this velocity. For those reasons,
the high-energy collective density oscillations (about few THz) could con-
vey information. In addition, this frequency region is also called the Fröhlish
band [45] where some dynamic behaviors usually take place within living
systems. This speed is also the velocity of the high-frequency vibrations
[93, 113] observed in processes of either protein hydration water or intracel-
lular water in living cells. Therefore, we could infer that the collective density
vibrations in the large Q-region and high frequencies whose wavelengths are
larger than the first neighbor inter-particle separation could perform the func-
tion of information propagation into organics with velocity about 3050 m/s.

Analogously, the phase velocity vps(Q) = Ω−(Q)/Q and the group speed
vgs(Q) = dΩ−(Q)/dQ for the low-frequency mode are also given, corre-
sponding to the solid and dot-dashed branches in Fig. 2.3, respectively. It is
clear to see that both speeds are not equal to each other in the region of the
large wave vector. It leads to a distortion of the envelope of a wave packet as
it travels. In addition, the group velocity of the lower transverse mode tends
to zero at high wave vectors as pointed out in Fig. 2.3. Thus, the lower mode
of the collective density fluctuations in this region could not play the role of
information propagation into organics because it is in the form of a standing
wave at large wave vectors and they do not move at all.

2.7 Microscopic approach for dielectric constant
of liquid water at low frequencies

The crossing point has been widely mentioned in theoretical investiga-
tions as well as in experimental works. In more details, the Raman response
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function χ(ω, T ) of the high−Tc material HgBa2CuO4+z (z-the doping level)
was plotted as a function of the Raman shift frequency ω for for different tem-
peratures T [54]. The specific heat of heavy-fermion compounds was also
plotted as a function of temperature T for different pressures P [18, 72]. It is
a rather common practice in science to represent the functional dependence
of a definite quantity g on a variable x and a parameter pwith the existence of
the crossing point by plotting the function g(x, p) with variable x for several
values of parameter p, named p1; : : pn. As a result, it brings about a family
of n functions g(x, pi) in which i = 1, . . . n. If this family of n curves
intersects at an isosbestic point according to x0, the formalism of g(x, p) of
this family of functions g(x, pi) is represented by a relation consisting of two
separate components

g(x, p) = g1(x, p) + g2(x, p). (2.13)

This function also satisfies the condition [52]

dg(x, p)

dp
|x=x0= 0. (2.14)

The compensation between the two components in the relation (2.13) at x0

leads to the existence of the crossing point. Generally, function g(x, p) is
often independent of parameter p in a small region of p value. The specific
form of g(x, p) in a certain situation is provided on the basis of analyzing
relevant mechanism and exploring the science behind the crossing point.

It is necessary to analyze the dynamic mechanism which happens in the
low-frequency region to provide a theoretical model describing the disper-
sion of water dielectric constant at different temperatures. Because water is
polar molecule, there are available dipoles H+δ −O−2δ. Moreover, the water
molecules could auto dissociate creating ion pairs H+e and OH−e[5]. Thus,
we can consider that liquid water is a plasma consisting of ions and dipoles.
When a sample of liquid water is placed in an alternating electric field with
low frequency, the dipoles are oriented, in line with the direction of the ap-
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plied field. The ion pairs created from the polarization of Maxwell-Wagner-
Sillars effect [77] simultaneously move toward the electrodes. Therefore, the
dielectric spectroscopy function of liquid water in the region of low frequency
can be expressed by the sum of two components like the relationship (2.13)
the first part relates to the orientation of dipoles and the second part concerns
the motion of ion pairs. Both the motions occur simultaneously, but they are
always independent of each other. The interaction between the ion pairs and
the dipoles can be ignored in this case because the density of ions is very
much lower than that of dipoles

For available dipoles, if a sample of pure water is placed in a low-frequency
alternate electric field, these dipoles orient in the direction of the field because
that motion would make their energy lower. It is noticeable that their orien-
tation is disturbed by thermal noise. Therefore, the orientation of dipoles
depends on the temperature T and it is almost independent of the frequency
in the low-frequency region. As a result, the dielectric component related
to the orientation of dipoles is considered as a function of temperature, i.e.,
written by εdip(T ). In addition, increasing temperature makes dipoles more
and more difficult to orient in the direction of the applied field due to thermal
noise. It is the reason that the value of function εdip(T ) decreases as rising
temperature. According to the above-mentioned information, we suggest that
the temperature dependence of the relative permittivity of liquid water at low
frequencies obeys Maxwell-Boltzmann statistics, given by

εdip(T ) = D1exp(υ1
T0 − Ti
T − Ti

) + %∞, (2.15)

where %∞, D1 and υ1 are constants, Ti = 273K, and T0 = 293K is the room
temperature.

For ion pairs, increasing temperature makes the number of free ions that
are created from the dissociation of water molecules increase. It means
that the dissociation of water molecules very much depends on temperature.
Thus, there is a gradual decrease of the pH [125] as rising temperature. We
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suggest that the pH of the liquid water is a function of 1/T . Such a de-
crease in the pH leads to the increase in the water dielectric constant as rising
temperatures at frequencies below ωiso. In the frequency range below ωiso,
the motion of ion pairs towards the electrodes is able to keep up with the
change of the external electric field. However, this motion cannot effectively
respond to the change of external field at high enough frequencies. It is the
main reason which makes the water dielectric constant reduce as increasing
frequency. Thus, the second term of the water dielectric constant is expressed
in a function of two variables including frequency ω and temperature T . Let
us provide this term in the form

εion(ω, T ) = Bion(T )exp[−βion(T )ω]. (2.16)

In the relationship (2.15), we suggest thatBion(T ) = αion+θionexp[−ηion(T0−
Ti)/(T − Ti)] and βion(T ) = aion + bion(T0 − Ti)/(T − Ti) in which αion,
θion, ηion, aion, and bion are constants. The appearance ofBion(T ) and βion(T )

in the function εion(ω, T ) illustrates the pH reduction with the temperature
increase, which leads to the decrease in the water dielectric constant if the
temperature increases

The relative permittivity of liquid water at low frequencies is provided by
combining the relationships (2.15) and (2.16)

ε(ω, T ) = εdip(T ) + εion(ω, T ). (2.17)

Although both the two phenomena simultaneously occur and the num-
ber of ion pairs is much lower than that of the water molecules, the dielec-
tric component related to the motion of ions is dominant at frequencies be-
low ωiso. Inversely, only the rotational motion of dipoles can respond effec-
tively to the alternate electric field at frequencies above ωiso. Thus, we have
ε(ω, T ) = εdip(T ). In addition, it was observed that the dielectric constant
of water at high frequencies (approximately 1 MHz) is almost independent
of the frequency at a definite temperature [3]. In high-frequency range, it is
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suitable to write

h(1/T ) = ln
ε(ω, T )− %∞

D1
= ν1

T0

T
. (2.18)

It is obviously seen that the function h(1/T ) linearly depends on 1/T . Ac-
cording to the data of water dielectric spectroscopy at 1 MHz and at sev-
eral different temperatures, we can obtain D1 = 0, 9897, υ1 = 0.0178 and
%∞ ≈ 43.5. The constants αion, θion, ηion, aion, and bion of the second com-
ponent εion(ω, T ) is determined in order to acquire the existence of the isop-
ermittive point at the frequency about ω = ωiso ≈ 3000 Hz and guarantee
that the function ε(ω, T ) obeys the general relationship (2.13). Moreover,
we have αion = 123.1, θion = 99.6, ηion = 0.6133, aion = 0.000486, and
bion = 0.000058 via the calculation on the basis of combining the previous
obtained parameters and experimental data.

2.8 Water dielectric constant at low frequencies
in the model

Fig. 2.4. The frequency dependence of the dielectric constant of liquid water
ε(ω, T ) at different temperatures obtains from the simple theoretical model.

At different temperature, the dispersion of the low-frequency dielectric
constant of liquid water Fig. (2.4) is represented by a simple model with
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two separated components. It is clear that the dielectric constant ε(ω, T )

decreases as rising frequency and vice versa at a definite temperature. The
curves according to the dispersion of the dielectric constants at different tem-
peratures cross at the frequencies centered around ωiso. The spectrum where
they cross is relatively narrow, demonstrating a quite small deviation between
the model and experimental results [3]. This small deviation possibly orig-
inates from several factors such as the molecular diffusion, the error calcu-
lation of the parameters in the model... Moreover, the permittivity increases
in the frequency region below ωiso, but it reduces in the opposite region of
the frequency as rising temperatures. On the qualitative point of view, a good
accordance between the theoretical result and the empirical data is shown.

Fig. 2.5. The comparison about dielectric spectroscopy of liquid water be-
tween results obtained by the theoretical model and empirical data [3] at
301K and 313K.

The dynamical mechanism, that is responsible for the existence of the
isopermittive point, is revealed from the simple theoretical model. As in-
creasing temperatures, the value of the first component of the dielectric con-
stant corresponding to the orientation of dipoles decreases while the value of
the second component corresponding to the motion of ions increases, or vice
versa. Thus, both different effects in the dielectric response compensate each
other at the isopermittive point. It results in the independence of the water
dielectric constant on temperature at ωiso.
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A quantitative comparison is also carried out by superimposing experi-
mental data [3] to our theoretical results at different temperatures, for exam-
ple, at 301K and 313K (Fig. 2.5). A good agreement between calculated
result and experimental data is found. This comparison allows us to further
evaluate the validity of the theoretical model given in this research.

2.9 Isopermittive point and van’t Hoff effect

The mechanism relating to the appearance of the isopermittive point men-
tioned in our model and the isosbestic points observed in the Raman spectro-
scopies [107, 137] is the same because they are all originated from the com-
pensation between two factors according two different species in the system.
Such a system could exhibit van’t Hoff behavior, i.e., the constant of equilib-
rium Kequil combines with the Gibbs free energy variation at the equilibrium
by van’t Hoff equation ∆Gequil is given by ∆Gequil = −RT lnKequil, where
R is the ideal gas constant. We suggest that the equilibrium constant between
two components of dielectric spectroscopy according to our model is defined
by Kequil = εdip(T )/εion(ω, T ).

Van’t Hoff plot is a graph with lnKequil on the vertical axis and 1/T on
the horizontal axis. It is also understood that van’t Hoff plot separates the
dielectric spectrum into two areas at the isopermittive point, illustrating the
ratio of the areas above and below this special point versus 1/T . In this
situation, the area below van’t Hoff plot is coincident with εdip(T )and the
area above this plot exhibits εion(ω, T ). Therefore, it is easy to draw van’t
Hoff plot corresponding to the equation

y(1/T ) = lnKequil =
∆Gequil

RT
. (2.19)

Van’t Hoff plot is a straight line (Fig. 2.6), in similarity with the result ob-
tained in the work related to Raman spectroscopy in Ref. [137]. Noted that
it is a pure theoretical plot and only has physical meaning in the temperature
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range from 298− 313K.
It is widely accepted that ∆G = ∆H−T∆S in thermodynamics. There-

fore, we have

y(1/T ) =
∆Hequil

RT
− ∆Sequil

R
, (2.20)

where ∆Hequil and ∆Sequil are respectively the enthalpy change and the en-
tropy change of the system in the equilibrium state corresponding to ωiso.
We suppose that E1 and E2 are respectively the energies of the system cor-
responding to the orientation of dipoles and the motion of ions in direction
of applied electric field. It can be written ∆Hequil = E1 − E2, representing
the energy difference between these two phases. Due to the perfect linearity
of van’t Hoff plot in this situation, it is possible to conclude that ∆Hequil is
a constant, i.e., the energy difference between two dynamical components is
independent of the temperature at frequency ωiso. Such a response could lead
to the existence of the isopermittive point which is observed by the dielectric
spectroscopy of water.

Using van’t Hoff equation for further investigation about the system in the
equilibrium state of dielectric spectroscopy brings interesting information.
It is impossible to perform this work on the basis of the phenomenological
model suggested in Ref. [3]. The presence of two separate components in
our model brings the opportunity applying van’t Hoff equation for further
investigation about the isopermittivity point via thermodynamic theory.

The ratio of ∆Hequil/R is easily determined from van’t Hoff plot. As
a consequence, we can estimate the enthalpy change ∆Hequil. In more de-
tail, we have ∆Hequil ≈ 869 J/mol ≈ 9 meV/particle. According to our
point of view, this change in enthalpy probably corresponds to the energy
variation in hydrogen-bonding change of water dipoles placed in the electric
field. The reason is that this value is much lower than the enthalpy change
in the hydrogen-bond rupture for liquid water (12 103 J/mol) [107]. Such
an enthalpy change is quite close to the potential energy of a water molecule
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Fig. 2.6. Van’t Hoff plot corresponding to the simple model for water dielec-
tric constant at low frequencies.

placed in the electric field about 500 V/m. It is also in agreement with the
fact that the dipoles can easily orient in the direction of this applied electric
field at room temperature.

The molar entropy change ∆Sequil/R between the two populations at
equilibrium state calculated on the basis of the intercept of van’t Hoff plot.
As a result, the value of T∆Sequil thus is given. In this case, we obtain
T∆S ≈ 885 J/mol per molecule at T = 305K, a value being quite close
to that of the enthalpy change ∆Hequil calculated above. It is clear that
∆Hequil ≈ T∆Sequil in the temperature range of 301− 313K, i.e, ∆Gequil ≈
0 at frequency ωiso. According to the thermodynamic point of view, the sys-
tem thus reaches to the equilibrium state, resulting in the existence of the
isopermittive point. This behavior quite resembles that of chemical reaction
in the regime of equilibrium state at a definite temperature and pressure. Be-
cause the system is only in equilibrium in a narrow range of temperature
(301− 313K) that is quite close to the region of normal animal’s body tem-
perature, we can infer that the existence of the isopermittive point is a local
phenomenon and possible relevant to dynamical processes happening in liv-
ing cells. The result obtained from van’t Hoff effect is rather interesting.
Moreover, we believe that, the characteristics of the water dielectric spec-
trum at low frequencies with the existence of the isopermittive point in the
regime of the normal animal’s body temperature could involve complicated

64



dynamic processes happening in living cells. It can offer a perspective for
research in dynamical mechanisms related to membrane permeability and in
the application of biological sensor.

Chapter Summary
Two expressions describing the dispersion properties of the collec-

tive density fluctuations of liquid water in the glass-like regime are given
on the basis of PP theory, explaining the origin of the fast sound. The two
modes originate from the interaction between local EM field radiated by wa-
ter dipoles in collective oscillation and the water phonon. Particularly, the
spectrum range and the wave vector region, where both the normal and the
fast sound modes appear, are pointed out. Some dynamic parameters of liq-
uid water such as the dielectric constants at THz frequencies, the phase and
group velocities are estimated, too. Moreover, a correlation between elec-
trodynamics and collective density vibration phenomenon in liquid water is
revealed.

A simple model consisting of two explicit arguments has been proposed
for interpreting the temperature dependence of the water dielectric constant
at low frequencies. Moreover, the existence of the isopermittive point where
the water dielectric constant does not depend on the temperature at frequency
ωiso is also pointed out and explained on the basis of dynamics. With a model
decomposed exactly into two separated components, the most remarkable
success of our model comes from the opportunity using van’t Hoff equation
when the system is in equilibrium at ωiso. The thermodynamic mechanism
responsible for the existence of the isopermittivity point is pointed out, ex-
pressing the local effect of the isopermittive point.

The material presented in this chapter forms the basis of the second and
the fourth papers in the list of the author’s works related to the thesis.
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Chapter 3

MICROWAVE ELECTRODYNAMICS OF

ELECTROLYTE SOLUTIONS

About 97 percent of all water on and in the Earth is sodium chloride
aqueous solution representing an electrolyte solution. It is easy to see that
electrolyte solutions include almost water molecules and a small amount of
dissociated ions. The presence of dissociated ions makes the dynamics of
electrolyte aqueous solutions significantly differ from that of pure liquid wa-
ter, particularly, the interaction between electrolyte aqueous solutions and
EM field in microwave frequency range.

Important role of electrolyte solutions in biological systems is widely rec-
ognized. Researches on their electrodynamics could offer an effective way
to explore electrokinetics in living cells including charge transfer, electro-
osmosis, electrophoresis [38], electro-chemical processes [102] as well as
the hydration in biology and chemistry [38, 48, 79, 85]. A good understand-
ing about conductivity and dielectric relaxation of the aqueous electrolyte
solutions at microwave frequencies is an important to interpret the dynamical
effects occurring in solution media [25, 33, 80, 102, 103]. In more detail, in-
teraction mechanisms between EM waves and biological tissues surrounded
by an aqueous buffer containing ions with different concentrations could be
revealed [83]. The changes in the microscopic structure and dynamical pa-
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rameters in the electrolyte solution system could be extracted from research
on its electrodynamics.

In this chapter, considering electrolyte solution as a plasma with wa-
ter background, its plasmon frequency is calculated by jellium theory. The
concentration and frequency dependence of the microwave conductivity for
electrolyte solutions is described by a simple approach called Drude-jellium
model. The value of the damping constant for the solution in the low fre-
quency range is estimated. The comparison between theoretical calculations
and empirical data is performed to validate the Drude-jellium model. The
temperature dependence of the diffusion coefficient for electrolyte solutions
at low frequencies is also considered by our model. The material presented in
this chapter forms the basis of the first paper in the list of the author’s works
related to the thesis.

3.1 Jellium theory

Jellium is a term used to refer homogeneous electron gas. Jellium theory
is a quantum mechanical model of interacting electrons in a solid where the
positive charges or atomic nuclei are considered as uniform distribution in
space with the uniform distribution of the electron density. Jellium model is
a useful tool to study the responses that appear in crystal materials without
obvious and detail representation about the structure of real materials due to
the quantum nature of electrons and their mutual repulsive interactions. In
fact, it is a simple model that is commonly applied to investigate delocalized
electrons in a metal, where features of real metals such as screening, plas-
mons, Wigner crystallization, and Friedel oscillations could be qualitatively
reproduced.

Let us consider the motion of a single kind of charged particles with den-
sity Ne, charged −e , and mass me in a neutralizing rigid continuous back-
ground of positive charge. If their mass is large, these charged particles have
a classical dynamics. So, the motion of particles is affected by the Coulomb
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potentials. Jellium theory [5, 100] may be a useful tool to investigate dy-
namic processes which take place in the materials. The Coulomb interaction
in the jellium theory can be written as

UC =
1

2

ˆ
drdŕϕ(r− ŕ)δn(r)δn(ŕ), (3.1)

where δn(r) is a small disturbances of density at r. Let’s employ now Fourier
representation for δn(r) in its spatial Fourier coefficients at wave vector Q

δn(r) =
1√
Λ0

∑
Q

δn(Q)exp{iQr}, (3.2)

where Λ0 = NeV is the total number of charged particles containing in vol-
ume V and δn(Q) = Ne√

Λ0

´
drδn(r)exp(−iQr). Likewise, we also have

ϕ(r) =
1√
V

∑
Q

ϕ(Q)exp{iQr}, (3.3)

where ϕ(Q) =
´
drϕ(r)exp(−iQr). It is noticeable that ϕ(q) = 4πε0e

2/Q2

is the Fourier representation of the Coulomb potential. As a result, we can
obtain the Coulomb interaction for the system

UC =
1

2Ne

∑
Q

ϕ(Q)δn(Q)δn(−Q). (3.4)

In addition, it is possible to represent the small variation in the density δn =

−Nedivu, where u is the vector of displacement. This representation holds
for the condition qu(r) � 1. So, we can write δn(Q) = −iNQu(Q) with
δn∗(−Q) = δn(Q), u∗(−Q) = u(Q), and u∗(−Q) = −u(Q). Because
the Coulomb interaction involves only longitudinal part of the displacement
vector u(Q) along the wave vector Q, we may have u(Q) = (Q/q)u(Q).
Consequently, the Coulomb interaction according to the relation (3.4) be-
comes
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UC = −Ne

2

∑
Q

Q2ϕ(Q)u(Q)u(−Q). (3.5)

Furthermore, the kinetic energy in the displacement wave vector representa-
tion for the system is defined by

T =
1

2

ˆ
drNemeu̇

2 = −1

2
me

∑
Q

u̇(Q)u̇(−Q). (3.6)

So, the equations of motion for the system derived from the Lagrange func-
tion are

meü(Q) +NeQ
2ϕ(Q)u(Q) = 0, (3.7)

which gives the well-known plasma frequency ω2
0p = e2Ne/ε0me.

Jellium theory is used to develop the local-density approximation within
density functional theory, giving a more complicated exchange-correlation
energy functions. Accurate values of the correlation energy density have been
obtained for several values of the electronic density from quantum Monte
Carlo calculations of jellium [5, 24], which have been applied to give semi-
empirical correlation functions. Recently, jellium theory has been applied
to investigate and interpret collective density oscillations in liquid water and
similar liquids [5].

3.2 Jellium theory for electrolyte solutions

We consider that an electrolyte solution, more particular for NaCl - a rep-
resentative electrolyte solution, is a plasma consisting of two ionic species,
cation Na+ and anion Cl− with the density of each ionic piece being Nion.
The mass of cation Na+ and anion Cl− are denoted by m1 and m2, respec-
tively. In this situation, we consider both ionic particles continuously dis-
tributed in a neutral continuous background of pure liquid water. Because of
their large mass, the ions have a classical dynamics. We can apply the jel-
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lium model to describe the collective oscillation for the electrolyte solution
of NaCl. Here, the equations of ionic motion can be derived by writing two
equations, one for the displacement vector u1 of the cation Na+ and another
one for the displacement vector u2 of the anion Cl−. In similarity with the
previous case, we limit ourselves to consider the motion of ions in water un-
der the action of the Coulomb potentialsϕNa−Na = ϕ(Q), ϕNa−Cl = −ϕ(Q),
and ϕCl−Cl = ϕ(Q), where ϕ(q) = e2/4πε0Q

2. As a result, the Coulomb in-
teractions for the solution are defined by

UNa−Na = −Nion

2

∑
QQ

2ϕ(Q)u1(Q)u1(−Q),

UCl−Cl = −Nion

2

∑
QQ

2ϕ(Q)u2(Q)u2(−Q),

UNa−Cl = Nion

∑
QQ

2[−ϕ(Q)]u1(Q)u2(−Q).

(3.8)

The kinetic energy Ts of the system is represented by

Ts = −1

2
[m1

∑
Q

u̇1(Q)u̇1(−Q) +m2

∑
Q

u̇2(Q)u̇2(−Q)]. (3.9)

Consequently, the motions of both ions are written as

m1ü1(Q) +NionQ
2ϕ(Q)u1(Q)− 2NionQ

2ϕ(Q)u2(Q) = 0,

m2ü2(Q) +NionQ
2ϕ(Q)u2(Q)− 2NionQ

2ϕ(Q)u1(Q) = 0.
(3.10)

The solution of these equations in the long wavelength limit Q→ 0 is

ω2
p =

Nione
2

m∗ε0
, (3.11)

which is considered as the plasmon frequency of the salt solution with m∗ =

m1m2/(m1 + m2). According to this relation, for example, the plasmon
frequency for the solution of sodium chloride with concentration 6.93% is
approximately 1012 Hz.

It is possible to generalize this model to a system of multi-component
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plasma consisting of several ions labeled by i, each ionic species with the
density Ni, charge zie (zi is the reduced effective electron charge), and mass
mi. In similarity with the previous case, the plasmon frequency of such a
system could be obtained in the following form [5]

ω2
pso =

∑
i

Niz
2
i e

2

ε0mi
. (3.12)

3.3 Drude model for metal dielectric permittivity

In 1990, Drude developed a classical theory to calculate for the dielec-
tric constant and the complex refraction index of materials as well as the
dispersion of their permittivity. After five years, this theory continued be-
ing developed by Hendrik Antoon Lorentz. It is a classical approach based
on considering electrons as damped harmonically bound particles subject to
external electric fields. The free electrons except electron bounded to a par-
ticular nucleus are considered as a classical ideal gas but the electrons should
be in collision with ions located at lattice nodes, not with each other. The
electrons oscillate in order to match with the applied electromagnetic field.
Due to collisions between the electrons with the stationary ions, their motion
is damped with a characteristic collision frequency γe = 1/τe, in which τe is
the relaxation time of the free electron gas, τe ≈ 10−14 s at room temperature
[87].

The motion of an electron in response to an alternative external electric
field E satisfies the equation

meẍ +meγeẋ = −eE. (3.13)

Assume that the applied electric field is given by E(t) = E0exp(−iωt). The
specific solution of this equation describing the motion of the electron is
x(t) = x0exp(−iωt), where x0 is the amplitude of the oscillation. Insert-
ing the equations of E(t) and x(t) into Eq. (3.13) it is obtained
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x(t) =
e

me(ω2 + iγeω)
E(t). (3.14)

The displaced electrons in response to the electric field contribute to the
macroscopic polarization P = −Neex. Combining the macroscopic polar-
ization P with Eq. (3.14), a new explicit relation is given

P =
Nee

2

me(ω2 + iγeω)
E. (3.15)

It is well-known that the displacement vector D = ε0E + P . Inserting Eq.
(3.14) into this equation yields

D = ε0(1−
ω2

0p

ω2 + iγeω
)E. (3.16)

The dielectric response of free electron gas in the Drude model is obtained
from Eq. (3.16)

εD(ω) = 1−
ω2

0p

ω2 + iγeω
. (3.17)

The real and imaginary components of this complex dielectric function are
written as

ε
′

D = 1−
ω2

0p

ω2 + γ2
e

, (3.18)

ε
′′

D =
ω2

0p

ω

γe
ω2 + γ2

e

. (3.19)

For EM waves whose frequency is satisfied with the condition ω � γe, Drude
model for the relative permittivity of metal becomes simpler with the pure
imaginary part, εD(ω) = ε

′′

D(ω) = iσ0
m/(ε0ω), where σ0

m = Nee
2/(meγe) =

ω2
0pε0/γe is the static conductivity of metal.
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3.4 Drude-jellium model for microwave conduc-
tivity dispersion

Drude theory is commonly applied for investigation electrodynamics of
metals. Because the dissociated ions in electrolyte solutions are responsible
for the conductivity and their response to the external electric field is quite
similar to that of the free electron gas in the metals, it is reasonable to use
the Drude model with a subsequent correction to treat the electrodynamics of
electrolyte solutions with water background.

We assume that the interaction between ions and water molecules is neg-
ligible. Since the plasmon frequency of solution, for example - NaCl aqueous
solution, determined by (3.11), we have

σ0
solu =

Nione
2

γ0m∗
, (3.20)

where σ0
solu is called the static conductivity for the sodium chloride in the

Drude-jellium model. In accordance with this relation, the static conductiv-
ity of solution is linearly proportional to the density of each ion Nion if the
temperature is held constant. In fact, the plot of the concentration dependence
of static conductivity for solution is a pure linearity [83] (dashing line in Fig.
3.1). It means that the damping constant of the solution in the static regime γ0

is a constant at a definite temperature. According to relation (3.20), its value
can be estimated via the slope of the concentration dependence plot of static
conductivity for the solution, γ0 ≈ 1014 s−1 [83], approximately the damping
constant of metallic conductors [43].

It is well-known that the relation between the ionic flow density J and the
current density amplitude I for the electrolyte solution of sodium chloride is
given by I = eJ . The ionic flow density under action of an external force
could be written by the following expression [34]

J = JD + Jσ, (3.21)
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where JD and Jσ are the densities of the diffusion and convective flows, re-
spectively. In addition, the diffusion flow counteracts the convective one.
Thus, the relaxation time of solution reduces with the appearance of the dif-
fusion flow. When an external field with microwave frequency is applied,
the diffusion modes are too slow to follow the external field that results in
the absence of the diffusion flow in the ionic flow density J . Only the con-
vective flow survives, so the relaxation time of solution at low frequencies is
higher than that in the static regime. We suggest that the damping constant of
electrolyte solution at low frequency is invariable denoted γi, and, we have
γi < γ0. In fact, the motion or relaxation of most ions can respond effectively
to the microwave field at low frequencies. As a result, the microwave con-
ductivity of the sodium chloride solution is invariable at low frequency and a
definite temperature, denoted σ0

max. Due to γi < γ0, the microwave conduc-
tivity of solution at low frequencies (below 8 GHz) is higher than its static
conductivity. This behavior has ever been observed by experiments [23, 83].
Thus, the microwave conductivity of solution at low frequencies is defined
by

σ0
max =

Nione
2

γim∗
. (3.22)

In accordance with the formula (3.22), the microwave conductivity for the
salt solution is independent of the frequency but linearly depends on the ionic
concentration (the solid line in Fig. 3.1), in similarity with the behavior of the
static conductivity mentioned above. In a similar way to derive the damping
constant γ0, the damping constant γi ≈ 0.78 × 1014 s−1 ≈ 0.8γ0 is obtained
for the salt solution at low frequencies. In the microwave regime, it is clear
that the value of this damping coefficient is much greater than frequency ω.
So, it proves the applicability of the Drude model in the simple form.

In addition, the response of ions to the alternative external electric field
becomes more and more difficult with the increase in frequency due to their
large mass. Consequently, an obvious decrease of the AC conductivity of
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Fig. 3.1. The AC conductivity σ0
max at 1 GHz of sodium chloride solution

in the Drude-jellium model versus the number of ions is shown by the solid
line. The dashing line illustrates the concentration dependence of the static
conductivity σ0

solu for the salt solution in Ref. [83]. The experimental data
[83] (symbols) are also represented to validate Drude-jellium model.

solution to zero at high enough frequencies was observed. We suggest that
ωC is the maximum frequency at which most ions can be still responsible
for the conductivity. Above this frequency, only ions under action of ther-
mal fluctuation are responsible for the conductivity function. It is clear to
see that the number of ion being responsible for the conductivity of solu-
tion is satisfied with the logistic function [104] which is used in range of
fields, including biology (especially ecology) [88, 138], physics (according
to Fermi–Dirac statistics) [37], economics [6], linguistics [14], and statis-
tics with the sigmoid’s midpoint ωC and the variable ω. In our opinion, ωC
plays the similar role as that of the cutoff frequency of physics and electrical
engineering. According to the experimental data, the value of ωC is approx-
imately 12 GHz. As a result, the real part of the microwave conductivity
σsolu(ω) for the sodium chloride solution at room temperature T0 also obeys
the logistic statistics with the curve’s maximum value σ0

max

σsolu(ω) =
Nione

2

γim∗
1

1 + exp[αL(ω − ωC)]
, (3.23)

where αL = 8.38~/kBT0 is corresponding to the steepness of the curve. It
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Fig. 3.2. Frequency spectra of the microwave conductivity in the Drude-
jellium model for the solution of sodium chloride with various concentrations
2.96 % , 6.93 % , and 11.05 % is represented by the solid line, dot-dashed
line, and dashing line, respectively. A good agreement between calculations
made by formula (3.23) and experiment data [83] (symbols) is also shown.

is noticeable that the value of the cutoff frequency is much smaller than that
of the plasmon frequency (ωC = 10−2ωp). It is common that the value of the
cutoff frequency is approximately equal to that of the plasmon frequency for
the electron gas. In our opinion, the influence of the water background on
the ionic motion causes the reduction of the cutoff frequency for this case in
comparison with the situation of the electron gas. Therefore, it is necessary
to be taken into account the role of the water background in the jellium model
for the electrolyte solution. In accordance with this relation, the microwave
conductivity of the electrolyte solution is invariable at low frequencies and
strongly decreases to zero at high enough frequencies. The linear concentra-
tion dependence of the microwave conductivity is also displayed. Further-
more, a good agreement between calculation results given by Eq. (3.23) and
experimental data in Ref. [83] can be obtained (see Fig. 3.2) if an ensemble
of the triple suitable parameters σ0

max, αL,and ωC extracted from experimen-
tal work is inputted. It is easily seen that the relation (3.23) in Drude-jellium
model describes well the frequency dependence of the microwave conductiv-
ity of the sodium chloride solution in a wide range of concentrations.
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3.5 The diffusion coefficient

It is well-known that the convection flows of ions in the sodium chloride
solution looks like

Jsolu = NionbmF, (3.24)

where F = eE is the force caused by alternative field E acting on ions,
and bm is the average ionic mobility. The ionic mobility combines with the
diffusion coefficient Dd by the Einstein relation bmkBT = Dd. We note that
the diffusion coefficient is related to the ionic concentration by Fick’s first
law JD = −D0gradNion, where JD denotes the diffusion flux vector.

Fig. 3.3. Temperature dependence of the diffusion coefficient for the sodium
chloride solution at low frequencies in the Drude-jellium model.

When an external field with microwave frequency is imposed, only the
convective flow survives due to the absence of the diffusion flow. So the
current density amplitude in the electrolyte solution is given by

Jsolu =
e2NionDd

kBT
E. (3.25)

Thus, the microwave conductivity of the sodium chloride solution is read by

σ0
max(ω) =

e2NionDd

kBT
. (3.26)
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In comparison between Eq. (3.22) and Eq. (3.26), the diffusion coefficient at
low frequency for solution of sodium chloride is given by

Dd =
kBT

m∗γi
. (3.27)

According to the relation (3.27), the diffusion coefficient of sodium chloride
solution is a linear function of temperature. It is also independent of the
solution concentration. This result is similar to that observed in experiment
[23] and in agreement with the Stokes–Einstein equation, the same for the
other electrolyte solutions. This is also an evidence to validate the Drude-
jellium model for microwave conductivity of electrolyte solutions suggested
in the above section again.

Chapter Summary
Assuming electrolyte solution as a plasma which consists of ions with

the water background, its plasmon frequency was provided by jellium theory.
The linear concentration dependence of the microwave conductivity for the
representative electrolyte solution was pointed out by the combination of its
plasmon frequency and the Drude formula with the simple form for dielec-
tric constant. The decrease of the damping constant which leads to the rise
in the microwave conductivity of the solution at low frequencies in compar-
ison with that in the static regime was interpreted due to the absence of the
diffusion flow in the solution. In addition, the frequency dependence of the
microwave conductivity of electrolyte solutions was mentioned and explained
by a microscopic approach, satisfying the logistic distribution. The value of
the cutoff frequency was given from our model. Furthermore, a linear tem-
perature dependence of the diffusion coefficient of solution at extremely low
frequencies like in term of the famous Stokes–Einstein is also pointed out by
our model.
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Chapter 4

NONLINEAR ELECTROSTATICS OF ELECTROLYTE

SOLUTIONS

Electrostatics of electrolyte aqueous solutions is an area of interest for ex-
perimental and theoretical works. A good understanding about electrostatics
of electrolyte solutions is essential for an accurate description of molecular-
level studies of macrobiomolecules [1, 94] and the interaction between sol-
vents and electric field [62, 76]. It is well-known that the static permittivity of
electrolyte solutions is different from that of the pure solvent, it decreases lin-
early versus concentration for dilute solutions and non-linearly for solutions
in high concentrations. While the mechanism of the electrodynamics for di-
lute solutions is quite well established in theoretical researches, that at high
concentrations remains poorly understood with many debates. Particularly,
static permittivity and specific conductivity are the important properties of
electrolyte solutions, characterizing its response to the external electric field.
It is used as parameters to describe effective inter-ionic interactions that ions
are considered as particles immersed in continuum medium [10].

In this chapter, the Langevin statistics with a subsequent correction is
presented to describe and interpret the nonlinear decrease in the static per-
mittivity with rising concentrations for electrolyte solutions at a definite tem-
perature below 5 mol/L. A comparison between theoretical results and ex-
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perimental data of several different solutions is carried out to validate the
theoretical model and extract the fitting parameter. Both the functions of the
Debye screening length versus the concentration or versus the Debye screen-
ing length of the solvent are given in the explicit forms. Thus, the significant
difference between the mean ionic activity coefficient in the recent theoretical
work and empirical data for concentrated electrolyte solutions is explained.
In addition, the nonlinear increase in the specific conductivity of electrolyte
aqueous solutions versus the concentration is also developed using the way
that is practically applied to metals by taking into account the transformation
from the weak interaction to the strong interaction of the internal electric field
at the concentration of about 0.4 mol/L. The material presented in this chap-
ter forms the basis of the third paper in the list of the author’s works related to
the thesis and a manuscript, in preparation for Communications in Physics.

4.1 Statistic model for the decrease in the static
permittivity of electrolyte solutions

4.1.1 Statistical model

Suppose that all water molecules in an electrolyte solution are the same
with the dipole moment µ. It is widely accepted that dipoles response to
external electric fields via the orientation polarization because their energy
could be lower. The concentration dependence of the static dielectric constant
of the solution is given if the concentration dependence of the orientation
polarization P (c, E) will be determined. The static dielectric constant εs(c)
of the solution could be written

εs(c) = εd +
1

ε0

P (c, E)

E
, (4.1)

in which εd is the dielectric part originating from effects that differ to the
orientation polarization of dipoles, for example the molecular polarization,
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being independent of the concentration and commonly equals to zero. The
orientation polarization P (c, E) comes from the aggregate contribution of all
water dipoles.

Considering pure water consisting of only single molecules without clus-
ters and the interaction between dipoles, the internal energy U(θ) of a dipole
in the external electric field with intensity E is read [73]

U(θ) = −µE cosθ, (4.2)

in which θ is the angle between the direction of the dipole moment vector and
the one of the electric field, 0 ≤ θ ≤ 1800. Because of the moving around
and rotating of dipoles energized by the thermal energy kBT , the orientation
in the field direction of the dipoles will be counteracted. Due to the classical
property of the system, its distribution function is in the form of Boltzmann
distribution. The number of dipoles N [U(θ)] with the internal energy U (θ) is
determined by

N [U(θ)] = Υexp

{
−U(θ)

kBT

}
, (4.3)

where Υ is the constant.
The average dipole moment of a water molecule in the direction of the

external field is given

µ̄F =
µ
´ π

0 sinθ cosθ exp
(
µE cosθ
kBT

)
dθ

´ π
0 sinθ exp

(
µE cosθ
kBT

)
dθ

. (4.4)

Finally, we have

µF = µL (β0) , (4.5)

where L (β0) = cothβ0 − 1/β0 is the Langevin function (β0 = µE/kBT ).
As a consequence, the orientation polarization of the pure liquid water is
expressed as
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P = N0µF . (4.6)

Considering all ions play the same role and spread out uniformly in the
electrolyte solution of type 1:1. The presence of dissociated ions makes its
orientation polarization differ from that of the pure water. Thus, the density
of dipoles in the electrolyte solution is N ∗and N ∗ < N0,

N ∗ = N0{1− γ(c)}, (4.7)

where γ(c) is the correction function because of the dilution of dipole den-
sity by non-polar ions. Water is the main component, leading to γ(c) � 1.
Moreover, the increase in concentration makes value of γ(c) increase. The
mean distance between two neighboring ions is large for low concentrations.
Thus, the impact of the local field generated from ions on the orientation
polarization of dipoles is negligible, resulting in the linear concentration de-
pendence of γ(c). However, the mean distance between two neighboring ions
becomes smaller in higher concentrations. Thus, the influence of the inter-
nal field on the orientation of dipoles in this situation is significant, leading
to a bit retardation of dipole orientation polarization. It means that the cor-
rection function γ(c) is nonlinear in high concentrations. It is suitable to
choose γ(c) = L(αc), in which L(αc) is also the Langevin function, because
Langevin statistics can sufficiently exhibit these features of the correction
component arising from the dilution of dipole density by non-polar ions and
the influence of the influence of the internal field on the orientation of dipoles.
The parameter α is introduced into L(αc) so that αc is dimensionless (α in
L/mol). Note that rising temperature makes the impact of the local ionic field
on orientation polarization of dipoles decrease due to the effect of screening.
The higher the temperature is, the shorter the length of screening is [69].
Therefore, the value of γ(c) reduces with the increase in temperature. It is
equivalent that the parameter α will decrease as rising temperature, i.e. α

is a function of the temperature. It is easy to see that there is a relation be-
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tween the parameter α and the length of screening. In reality, the larger ionic
size, the larger the value of the correction function. It is easy to see that the
value of parameter α is proportional to the mean ionic size. The orientation
polarization of the electrolyte solution takes the form

P (c, E) = N0µL(β){1− L(αc)}. (4.8)

β0 is commonly less than 1, so L(β0) ≈ β0/3. L(αc) is also written as

L(αc) =
αc

3
− (αc)3

45
+

(αc)5

945
− . . ..

The orientation polarization of the solution could be represented in the ex-
plicit form

P (c, E) =
N0µ

2E

kBT
{1− αc

3
+

(αc)3

45
− (αc)5

945
+ . .}. (4.9)

According to the relation (4.1), the static dielectric constant ε(c) of the elec-
trolyte aqueous solution is exhibited by

εs(c) = εw{1−
αc

3
+

(αc)3

45
− (αc)5

945
+ . .}, (4.10)

where εw = N0µ
2/ε0kBT is the dielectric constant of pure water at the tem-

perature T (εd ≈ 0). The concentration dependence of the static permittivity
of the solution could be further understood from the relationship (4.10).

The theoretical model describing the decrement in the permittivity of
electrolyte solutions is developed on the basis of the familiar Langevin statis-
tics, which is usually applied for studying the paramagnetism of solid mate-
rials. However, a necessary customization of this statistics is carried out by
introducing correction function γ(c) = L(αc) into the calculation due to the
dilution of dipoles by ions and the influence of the internal electric field on
the orientation polarization. Such an innovation makes the static permittivity
function become nonlinear versus concentration.
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4.1.2 Statistical model and experimental data

Fig. 4.1. The concentration dependence of the static permittivity for differ-
ent electrolyte solutions of type 1:1 at 298K corresponding to the theoretical
model is represented by the dotted line (LiCl), dashed line (NaCl), solid line
(KCl), and dot-dashed line (CsCl). The experimental data [26] are exhibited
by symbols.

Comparison between the relationship (4.10) in the theoretical model and
empirical data [26] of different electrolyte solutions of type 1:1 at 298K,
a quite good agreement is obtained in the concentration range from 0 to
5 mol/L with only single input parameter εw = 78. For dilute concentra-
tions, the permittivity linearly depends on the concentration. However, its
nonlinear decrease is exhibited for electrolyte solutions in high concentra-
tions due to the significant influence of the local ionic field on the dipole
orientation polarization. Moreover, the value α could be extracted for differ-
ent solutions. According to the extracted results, we have: the large mean
radius of ions, the higher the value of α (table 4.1). It is clear to see the in-
fluence of the ionic size on the nonlinear decrease in the static permittivity of
electrolyte solutions. This model has ever been tried applying for the elec-
trolyte solutions with concentration beyond 5 mol/L. However, it is shown
that there is a significant difference of the dielectric constant between the
model and experimental data. In our opinion, the strong interaction between
ion-ion in solution with high concentration maybe results in such a deviation.
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Moreover, the difference in sizes of anions and cations for concentrated solu-
tions may change the statistical feature of the system. Therefore, the relation
(4.10) is impossible to describe the concentration dependence of the static
permittivity with concentration above 5 mol/L.

4.2 The Debye screening length according to the
nonlinear decrement in static permittivity

4.2.1 Debye screening length

Debye length or Debye radius λD is a measure of charge carrier’s net
electrostatic effect in an electrolyte solution and how far its electrostatic effect
persists. The inverse Debye screening length, noted K, for an electrolyte
solution at a temperature of T in the original D-H theory is determined by
[69]

K =

√
4πe2NA

εsε0kBT

∑
i

ciz2
i , (4.11)

where εs usually takes the static permittivity of pure liquid water ( εw), ci is
the molar concentration of ion of ith type and NA is Avogadro’s number. In
most researches until the end of the 20th century, the experimental permit-
tivity of pure solvent was commonly used to describe the electrolyte solution
medium [59], leading to a significant deviation between the theoretical results
and experimental data about the Debye screening length for concentrated so-
lutions. Because the static permittivity of electrolyte solution decreases with
rising concentration as mentioned in the previous section. In addition, cal-
culating the activity coefficient of electrolyte solutions was performed with
complicated calculations [124] in which the permittivity was considered to be
linear decrement. As a consequence, a good agreement between experimental
data and theoretical results was only obtained for solutions below 2 mol/L. In
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our opinion, extending the D-H theory and calculating the activity coefficient
in the previous work could be further done for more concentrated solutions,
in which the decrement in the permittivity is nonlinear, if the inverse Debye
screening length in the reasonable and simple form is provided.

4.2.2 The Debye screening length versus concentration in
the statistical model

Fig. 4.2. The concentration dependence of the Debye screening length for
NaCl solution at 298K in the original D-H theory, the linear decrement, and
nonlinear decrement of the static permittivity in the model (4.12).

The simple form of the inverse Debye screening length could be given
from this work with the relation (4.10). Combining Eq. (4.10) and Eq. (4.11),
the inverse Debye length is rewritten by

K2(c) =
K2

0

1− αc
3 + (αc)3

45 −
(αc)5

945 + . .
, (4.12)

where

K0 =

√
4πe2NA

εwε0kBT

∑
i

ciz2
i .

K0 is to be the inverse Debye length in the original D-H theory. The concen-
tration dependence of the Debye length of electrolyte solutions in the range
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of concentration from 0 to 5 mol/L at a definite temperature could be given
with parameter α obtained in the previous section (see Fig. 4.2). According
to the Fig. 4.2, there is a significant difference of Debye length in the original
D-H theory and that in the model for solutions in high concentrations, lead-
ing to a significant deviation with experimental data on activity coefficients
in the original D-H theory for concentrated solutions. However, the deviation
between the Debye length according to the nonlinear and that correspond-
ing to the linear decrement of the permittivity in the model is very small in
the concentration range from 0 to 5 mol/L. Therefore, when the function
of the Debye length versus concentration (4.12) is used, we recommend that
extending the D-H theory should only stop at the level according to the linear
decrement in static permittivity in order to simplify calculations.

4.2.3 The Debye screening length upon the Debye screen-
ing length of solvent

In 2015, I.Y. Shilov and A.K. Lyashchenko [124] calculated the activity
coefficient of electrolyte solutions as the static permittivity of solution was
exhibited in the function of K0

εs = εwf(K0). (4.13)

However, the explicit form of f(K0) wasn’t still given, leading to encum-
brances in extension of the D-H theory. Moreover, the calculation of the
activity coefficient was limited in the level as the decrement in static permit-
tivity is linear, resulting in a significant deviation of experimental data on
activity coefficients for several concentrated electrolyte solutions. Providing
the simple and explicit form of f(K0) could simplify calculations in the work
in 2015 and improve the agreement between experimental data and theoret-
ical results for concentrated solutions. According to the model described by
Eq. (4.10), in which the dielectric constant is to be nonlinear decrement, the
explicit form of f(K0) could be given. Indeed, combining equations (4.10)
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and (4.13), it is easy to have

f(K0) = 1− (bK0)
2

3
+

(bK0)
6

45
− (bK0)

10

945
+ . .′ (4.14)

in which b is a constant having dimension of length. It is easy to see (bK0)
2 =

αc. Because there is a relation of the constant α to the mean ionic size, b is
perhaps involved the ionic size. Indeed, with the value extracted from the
previous section, the value of b could be given

b =

√
αc

K0
. (4.15)

Applying Eq. (4.15) for several electrolyte solutions of type 1:1 at 298K, we
have b ≈ r0 (table 4.1) with

r0 =
r+ + r−

2
,

where r+ and r− are the radii of cation and anion, respectively. So b in equa-
tion (4.14) could be considered as the mean radius of ions in the solution.

Table 4.1: The value of b provided by the relation (4.15).

Solution type α(L/mol) r0 (Å)[57] b/r0

LiCl 0.29 1.21 1.05
NaCl 0.34 1.38 1.02
KCl 0.41 1.57 1.01
CsCl 0.43 1.75 0.92

As mentioned above, the inverse Debye length K could be represented in
the explicit form of K0 from the relation (4.14) without any fitting parameter

K2 =
K2

0

1− (bK0)2

3 + (bK0)6

45 − (bK0)10

945 + .
. (4.16)

If the static permittivity is to decrease linearly with concentration, only the
second order of screening length is referred as the linear function of concen-
tration. Particularly, the Debye screening length function will be introduced
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Fig. 4.3. The dependence of the Debye length on (bK0)
2 according to the

relation (4.16) according to the nonlinear and the linear decrements of the
static permittivity in the model.

into the calculation, similar to the work in Ref. [124]. With the nonlinear
decrement of the static permittivity, higher orders of K2

0 need taking into ac-
count. However, there is a big difference of the Debye length between these
two ways of calculating for concentrated electrolyte solutions (see Fig. 4.3).
Possibly, it is the reason for a deviation with the experimental data on activity
coefficients in Ref. [69] for several concentrated solutions when the decre-
ment of the permittivity is considered to be linear. In our opinion, calculating
the activity coefficient of electrolyte solutions with the inverse Debye screen-
ing length K in nonlinear regime given by relation (4.16) with higher orders
of K2

0 could improve the agreement between theoretical results and experi-
mental data in this work.

4.3 Weak and strong interaction regime of the in-
ternal electric field

In order to provide a theoretical model interpreting the static conductivity
of electrolyte solution versus its concentration, it is necessary to interest in
the interaction between ion-ion as well as ion-solvent interaction. Is is widely
accepted that water molecule is polar with polar endings. After dissociating,
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free ions evenly spread in the whole solution. Each ion could be considered
as a sphere with charge identically distributing on the surface. Ionic cloud
with opposite charge surrounds the free ion. It is clear to see that there is a
own electric field locating in the sphere surrounding each free ion. According
to the theory of screening length, the spherical space of own electric field is
limited by the radius about the Debye length λD. It also exists an electric
field outer spherical spaces but its intensity is far smaller than the own elec-
tric field of ions. In addition, the value of Debye screening length dramati-
cally decreases as raising the concentration. For example, it is about 9.6 nm

for the sodium chloride solution at room temperature with concentration of
0.001 mol/L, but approximately 0.96 nm for solution with concentration of
0.1 mol/L [141].

In dilute electrolyte solutions, each dissociated ion could be considered
as a point charge. However, this hypothesis is not right for concentrated
solutions because the interactions between ion-ion and ion-solvent become
significant. We pay a great attention in the interaction between ion-ion. It is
naturally Coulomb interaction through the own electric field of the ions. For
dilute solutions, the mean distance between ion-ion is quite large. Therefore,
almost ions locate outside the spherical space of the other ions. Consequently,
the interaction between ion-ion is the long and weak interaction. In this sit-
uation, each ion could be regarded as a free ion or they are in the form of
double solvent-separated ion pair called 2SIP where both ions keep their pri-
mary solvation shells. For the solutions with higher concentrations, the mean
distance between ion-ion is smaller, resulting in the fact that the ion could
locate in the own electric field of other ions carrying opposite charge. There-
fore, the near and strong interaction between ion-ion is present in the system,
too. The ions could also exist in the forms of solvent-shared ion pair (SIP)
sharing a part of their hydrate shell and contact ion pair (CIP) in which the
anion and cation are in direct contact. The presence of 2SIP, SIP, and CIP
forms have ever been recognized in several researches [2, 20, 40, 136]. It is
possible to coexist three types with different ratio between them, depending
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on the concentration of the solution. The three kinds continuously create,
break, and convert their-self between each other.

According to the dielectric relaxation spectrum, information about the
corresponding concentrations of 2SIP, SIP, and CIP in the solution [2] could
be revealed. It is interesting that the concentration of 2SIP gradually de-
creases as rising concentration and reaches to 0 at the concentration of about
0.4 mol/L. In my opinion, the reason is that the weak interaction regime
gradually disappears as rising concentration. Both the two interaction regimes
could coexist in the solution with concentration below 0.4 mol/L, leading to
the appearance of 2SIP, SIP, and CIP. However, the own electric field of ions
covers everywhere of the system. Therefore, the own field is in the strong
interaction regime, leading to the absence of 2SIP in the solutions above
0.4 mol/L. It is possible to consider that the value of 0.4 mol/L is the
critical concentration of weak interaction regime.

In dilute solution, the electric field surrounding ions is considered quite
weak, in similar to that of liquid water and not depending on concentration.
So the dynamics of dilute solutions is the same as that of liquid water. How-
ever, due to the transformation of interaction regime at about 0.4 mol/L the
own electric field, the change in the electrodynamical features happens. For
example, below 0.4 mol/L, the static conductivity of electrolyte solution
linearly increases versus the concentration. In contrary, it is the nonlinear
function of concentration for solutions with concentrations above 0.4 mol/L

[99].

4.4 Simple model for static specific conductivity
of electrolyte solutions

4.4.1 Static specific conductivity in weak interaction regime

For dilute electrolyte solutions, the own electric field occupies a small
space in comparison to whole space of the system. Due to the existence of the
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Fig. 4.4. Specific conductivity of dilute sodium chloride aqueous solution
at room temperature versus concentration in the model (solid line). A com-
parison between theoretical result and experimental data [21, 99] are also
expressed in the figure.

weak electric field in the dilute solution, its dynamical features are quite the
same as those of liquid water. It means that dynamics of the dilute electrolyte
solution is independent of the concentration. For example, the viscosity of
the dilute electrolyte solution is independent of the concentration, taking the
same value as that of liquid [51]. Consequently, the mobility of ions in the
dilute solution also is independent of the concentration. The mobility bi of
ion type i th combines to the viscosity η0 by the relation bi = zie/6πη0ri,
where ri are the radius of the ion. Therefore, the electric current density in
the dilute solution is given in similar way that is applied for metal materials
imposed in the electric field with intensity E

Jdilu =
∑
i

NAciziebiE. (4.17)

It is also written by

Jdilu =
∑
i

NAciz
2
i e

2

6πη0ri
E. (4.18)

Noted that the specific conductivity relates to the current density, satisfy-
ing with the well-known relation J = σE (σ is the specific conductivity of
material). It is easy to define the conductivity for dilute electrolyte solution
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σ0
dilu(c) =

∑
i

NAciz
2
i e

2

6πη0ri
. (4.19)

With aqueous solution of type 1:1 such as sodium chloride aqueous solution,
Eq. (4.19) becomes simpler, written by

σ0
dilu(c) =

NAce
2

3πη0r0
. (4.20)

According to Eq. (4.20), the specific conductivity of sodium chloride aqueous
solution linearly depends on its concentration for the dilute one, in agreement
with experimental data (Fig. 4.4).

4.4.2 Static specific conductivity according to the strong in-
teraction regime

For solutions with higher concentration (above 0.4 mol/L), the internal
electric field is in strong interaction regime. Therefore, the specific feature of
this field changes, leading to the change in the viscosity of the solution, noted
η instead of η0 for dilute solutions. It was reported that the viscosity of con-
centrated electrolyte solution depends on the concentration by the function
[51]

η = η0(1 + C0

√
c+D0c), (4.21)

in which C0 and D0 are both empirical constants. The parameter C0 is con-
sidered as a function of temperature, depending on ionic charge and type
of solution while D0 characterizes ion-ion interaction. Combining relations
(4.19) and (4.21), it is deduced that the specific conductivity of concentrated
electrolyte solutions σ0

solu(c) is written by

σ0
solu(c) =

∑
i

NAciz
2
i e

2

6πriη0(1 + C0
√
ci +D0ci)

. (4.22)
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Fig. 4.5. Specific conductivity of concentrated sodium chloride aqueous so-
lution at room temperature versus concentration in the model (solid curve).
A comparison between theoretical result and experimental data [99, 127] are
also expressed in the figure.

Applying this equation for the sodium chloride solution, it has

σ0
solu(c) =

NAce
2

3πr0η0(1 + C0

√
c+D0c)

. (4.23)

According to the experimental data for NaCl aqueous solution at 250C, C0 =

0.0005 10−4mol−1/2, D0 = 0.232 mol, and η0 = 89 mP/m, there is an
accordance between theoretical result and experimental data (Fig. 4.5). It is
able to believe that there is a change in the interaction regime of the internal
electric field as raising the concentration of the solution.

Chapter Summary
A statistical approach is developed to describe and interpret the non-

linear concentration dependence of the static permittivity of electrolyte so-
lutions at a definite temperature with a single fitting parameter for solutions
of type 1:1 below 5 mol/L. The model is built by modifying the familiar
Langevin statistical theory, which is usually applied for investigation on the
paramagnetism of solid materials. The model pointed out the influence of the
ionic size on the decrease in the permittivity: the larger the ionic size, the
lower the permittivity. The decrement in Debye screening length is consid-
ered carefully and obviously by the model. Particularly, the Debye screening
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length function K(K0) without any fitting parameter is provided, allowing
to explain the difference between theoretical result and experimental data
about the activity coefficient of concentrated electrolyte solutions in the re-
cent work.

Moreover, the theoretical model, which is familiar in use for describing
the specific conductivity of metals, is developed to quantitatively describe
the concentration dependence of the specific conductivity of electrolyte solu-
tions. Below 0.4 mol/L, the local electric generated by charged particles in
the solution is similar to that of pure water. Thus, its viscosity is independent
of the concentration, resulting in the linear reliance of the conductivity on the
concentration. However, in the opposite limit, the local electric field is in the
strong interaction regime, leading to the increase in the viscosity upon con-
centration. As a consequence, the specific conductivity depends non-linearly
on the concentration, in agreement between theoretical result and experimen-
tal data for solutions up to 0.5 mol/L.
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CONCLUSIONS AND FURTHER RESEARCH

DIRECTIONS

1. Conclusions

In this thesis, we mostly focus on investigating some complicated dy-
namic phenomena of liquid water and electrolyte solutions in relation to the
interaction between water systems and the EM field in several different fre-
quency ranges. The main and new results obtained in the thesis can be sum-
marized as follows:

• Modified PP model was developed on the basis of PP theory with sub-
sequent corrections due to the diffusion of particles to describe the dis-
persion of collective density oscillations traveling in liquid water, in
agreement with experimental data. The appearance of both the fast
sound and the normal sound in liquid water was illuminated by PP
theory, resulting from of the interaction between traverse sound wave
and the internal electric field radiated from the oscillation of water
dipoles at high enough frequencies. Moreover, spectrum range, wave
vector region, and the change in spectrum range versus temperature
were pointed out. In addition, the electro-acoustic correlation in pure
liquid was revealed by the model. Some critical electro-dynamic pa-
rameters in the terahertz frequency range such as viscosity coefficients,
dielectric constants, phase and group velocities are estimated from the
modified PP model.
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• A theoretical model has been provided for interpreting the dispersion of
the low-frequency dielectric constant of liquid water with two separate
arguments relating to dipole orientation in the direction of the electric
field and the motion of ions towards the electrodes, respectively. It is
pointed out that the compensation between these two arguments leads
to the appearance of the isopermittive point in the temperature range
from 301K to 313K. The mechanism responsible for the existence of
the isopermittive point is also clarified under the light of thermodynam-
ics. The changes in enthalpy and Gibbs free energy are estimated via
van’t Hoff equation for the water system in the thermal equilibrium.

• The plasmon frequency for electrolyte solutions was defined through
jellium theory, about THz. Combining jellium theory and Drude the-
ory, the dispersion of the microwave conductivity of the electrolyte
solutions at room temperature was also quantitatively given, obeying
logistic statistic and in agreement with experimental data at differ-
ent concentrations. In addition, the linear temperature dependence
of the diffusion coefficient for electrolyte solutions at low frequencies
was pointed out by Drude-jellium model, in similar to the well-known
Stokes–Einstein equation.

• The nonlinear decrement in the static permittivity of concentrated elec-
trolyte solutions was described by the Langevin statistics that is famil-
iar in use to study the paramagnetism of solid materials with a sub-
sequent innovation. This modification is due to the dilution of dipole
by dissociated ions and the influence of the local electric field radiated
by ions on the polarization of water dipoles. The model is in agree-
ment with experimental data for different electrolyte aqueous solutions
at room temperature. According to the model, the concentration de-
pendence of Debye screening length of electrolyte aqueous solutions is
considered more carefully and more obviously. Particularly, the Debye
screening length of electrolyte solution at room temperature against
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the solvent Debye length was also given without any fitting parame-
ter, allowing us to explain the deviation between theoretical results and
experimental data about the activity coefficient of concentrated elec-
trolyte solutions in the recent work.

• The specific conductivity of electrolyte solution at room temperature
versus its concentration was developed in the similar way that is applied
to metals. According to the model, it was predicted that there is a
transformation from weak to strong interaction regimes of the internal
electric field in the solution at the concentration of about 0, 4 mol/L.

2. Further research directions

Some potential open topics about microdynamic behaviors of liquid water for
future researches include

• Applying PP theory to research collective density oscillations of the
other similar liquids as liquid water, even liquid metals. The modified
PP model could be used to investigate thermodynamic behaviors of
liquid water such as determining the Debye temperature and interpret-
ing the heat capacity at different pressures. Moreover, electro-acoustic
correlation in liquid water remains several open topics for further re-
searches, for example, the ultrasonic vibration potential of liquid water.

• Researching interactions between water systems and foreign objects in
biological and chemical systems on knowledge of water microdynam-
ics.

• Studying further about nonlinear electrostatics of electrolyte aqueous
solutions and electrolytes in the other high-polar solvents versus tem-
perature.
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