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INTRODUCTION

1. Motivation

Water is studied by interdisciplinary science, including physics,
chemistry, and biology. A great attention of researcher has been
paid for water with an impressive accomplishment. However, the
nonlinear microdynamics of liquid water and aqueous solutions is
not still thoroughly understood, needing a further investigation.

In 1974, using Molecular Dynamics (MD) simulations, it was
proposed the coexistence of the fast sound (3050 m/s) and the
common sound (1500 m/s) in liquid water. A great number of
experimental works whose results supported the coexistence of
the two modes. According to the viscoelastic model, neither
the forming nor the breaking of the hydrogen bonds can occur
as the frequency Ω > 1/τF . Liquid water behaves in its glass-
like regime, leading to the propagation of both the modes. The
two-mode interaction model proposed that the two branches are
originated from splitting of the longitudinal branch due to the in-
teraction between elementary excitations of the linear dispersion
mode and those of the dispersionless mode. The dispersion rela-
tions with the presence of the coupling coefficient β(Q) between
each other were suggested on the phenomenological basis. How-
ever, the microscopic mechanism responsible for the presence of
the fast mode, its spectrum, and the splitting of the two modes
remains still insufficiently understood.

The temperature dependence of the water permittivity below
1 MHz with the isopermittivity point at ωiso ≈ 3000 Hz was ob-
served. However, there is lacking a theoretical model originated
from solid arguments interpreting its dispersion. In addition, the
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work of S. Li et.al. (2014) reported the conductivity dispersion of
electrolyte solutions in the range of GHz frequency via combining
Debye-Drude theory and experimental data with interesting re-
sults. The microscopic mechanism responsible for the dispersion
of microwave conductivity needs a further study.

Electrostatics of dilute electrolyte solution is linear and it is
carefully studied. However, it exhibits the nonlinear property for
concentrated solutions. The microscopic mechanism responsible
for the nonlinear electrostatics such as the decrement in the per-
mittivity and the increase in the specific conductivity is being a
hot topic for research with different points of view.

As mentioned above, it remains several open topics about the
nonlinear dynamics of water systems in relation to the interaction
between liquid water and electromagnetic field. In order to take
part into further clarification on the microscopic dynamical mech-
anisms responsible for some complicated microdynamic behaviors
of water and aqueous solutions, we select the topic “Study on
some microdynamic behaviors of liquid water” for this doc-
toral thesis.

2. Purposes, objectives, and scopes

The thesis only focuses on studying several nonlinear micro-
dynamic behaviors of liquid water and aqueous solutions in rela-
tion to the interaction between liquid water and electromagnetic
field, specifically as:

• Developing a theoretical model to describe the dispersion
of the collective density oscillations of liquid water in the
THz region and illuminating their dynamic mechanism.

• Interpreting the dispersion of low-frequency permittivity of
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liquid water and pointing out the science behind the isop-
ermittivity point.

• Providing a model for the dispersion in microwave conduc-
tivity of electrolyte solutions in GHz range and clarifying
its dynamic mechanism.

• Investigating nonlinear electrostatics such as the decrement
in the permittivity and the increase in the conductivity of
electrolyte solutions.

Our research further contributes to new research results on water
dynamics in hope to promote study about chemical and biological
interactions.

3. Research methods

We use several methods: combination and customization of
theoretical techniques used in solid physics, modeling and numer-
ical calculations, statistics, similarity, data analysis and so on.

4. Thesis outline

Besides the parts of Introduction, Conclusions, and Refer-
ences, the thesis includes:

• Chapter 1 Properties and complicated behaviors of water

• Chapter 2: Some dynamic features of liquid water

• Chapter 3: Microwave electrodynamics of electrolyte solu-
tions

• Chapter 4: Nonlinear electrostatics of electrolyte solutions
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Chapter 1

PROPERTIES AND COMPLICATED BEHAVIORS

OF WATER

In this chapter, we attempt to outline some fundamental prop-
erties and complicated behaviors of water and aqueous solutions
in order to find out open topics for research.

1.1 Anomalous properties of liquid water

It was pointed out that water possesses about 72 different
anomalous features. The anomalous properties are rather derived
from the unique property of hydrogen bonds, the small size and
the polarity of water molecules.

1.2 Dielectric constant of water systems

There are numerous of experimental data about the water di-
electric in the range from MHz to THz given by different methods.
Several mathematical models have been developed for macro-
scopic description of the complex permittivity. One of the most
well-known semi-empirical models is Debye equation, describing
dielectric relaxation not only for liquid water but also for elec-
trolyte solutions as interaction between water molecules is not
significant. In fact, there is an interaction among dipoles. There-
fore, it is necessary to improve the Debye equation by adding
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empirical parameters, for examples, models of Cole-Cole, Cole-
Davidson, and Havriliak-Negami. The information on the struc-
ture and dynamics of the liquid water or aqueous systems could be
revealed as the relation between the permittivity and microscopic
features is established. The microscopic mechanism responsible
for the relaxation of the permittivity of pure water and aqueous
solutions is being studied with surprise and interesting results.

1.3 Outstanding microdynamics of liquid wa-
ter

In liquid water systems, the hydrogen bonding makes par-
ticles response collectively with external excitation besides dif-
fusion. The diffusive motion is quite complicated, consisting of
reorientation diffusion and self-diffusion.

Liquid water is a plasma of H+δ cations and O−2δ anions
(δ - reduced electron charge) due to the strong polarity of wa-
ter molecules. Charge particles in oscillation can radiate an AC
Electromagnetic (EM) field. This field can couple with collective
density oscillations, resulting in complicated phenomena. Apply-
ing plasma, plasmon, Phonon Polariton (PP) theories allows us
to further understand dynamic properties of the water systems.
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Chapter 2

SOME DYNAMIC FEATURES OF LIQUID WA-

TER

In this chapter, we study the dynamic mechanism responsible
for the coexistence of the common sound mode and the fast mode
on the basis of PP theory. In addition, a simple model with two
separated arguments is developed for interpreting the dispersion
of low-frequency water permittivity and illuminating the science
behind the appearance of the isopermittivity point. The material
presented in this chapter forms the basis of the second and the
fourth papers in the list of the author’s works related to the thesis.

2.1 Modified PP model

Water dynamics closely relate to the fluctuation of molecules,
diffusion, interaction among molecules, breaking and forming hy-
drogen bonding network. As the frequency of collective density
fluctuations is higher than ωF , traverse phonons emerge. In addi-
tion, water is considered as a plasma. The fluctuation of dipoles
could radiate a local EM field with frequency ω aboutTHz whose
wavelength is approximate 10 µm. The coupling of the traverse
mode with the local EM field leads to the appearance of the high-
energy mode and the low-energy one whose dispersion satisfies PP
theory

6



Ω2
±(Q) =

1

2
{ c

2
0

ε∞1
Q2 +ω2

L1± [(
c2

0

ε∞1
Q2 +ω2

L1)2−4
c2

0

ε∞1
Q2ω2

T1]1/2},
(2.1)

where ε∞1 is the dielectric response of liquid water at high fre-
quency, ωL1 and ωT1 are the longitudinal and the transverse res-
onance frequencies, Q is the wave vector, and c0 is the speed of
light in vacuum

2.2 The main results of modified PP model

The modified PP model with the two dispersion relations de-
scribes quite well the dispersion of two modes on both the quality
and quantitative sides, travelling with vf ≈ 3050 m/s in the large
region of Q and vs ≈ 1500 m/s as Q→ 0, in agreement with ex-
perimental data (Fig. 2.1). The spectrum of both the modes
is determined from ωF (Frenkel frequency) to Debye frequency
ωD ≈ 40 meV. As a consequence, the wave vector of the spec-
trum is from QF to QD (about from 0.4 Å−1 to 1.2 Å−1 at room
temperature). Rising temperature T makes ωF increase. There-
fore, it is predicted that the spectrum range becomes more narrow
as increasing T . It is seen that the band gap is located between
ωT1 and ωL1.

The transformation from hydrodynamics to glass-like regime
at frequency ωF leads to the change in some dynamic param-
eters that could be estimated. Below Frenkel frequency, shear
modulus is not supported. In the glass-like regime, there is the
presence of the low- and the high-frequency moduli whose values
are determined, Gm = ρdv

2
s and Mm = ρdv

2
f (ρd is the mass den-

sity of water,vf - speed of fast sound and vs - speed of common
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Fig. 2.1. Dispersion of the collective density oscillations model
versus Q: The upper solid curve - the fast mode; The lower curve
- ordinary one; The dot-dashed - transverse phonons with fre-
quency ωT1; The symbols - experimental data.

one). Therefore, the viscosity at low and high frequencies could
be given, ηs = GmτF and ηf = MmτF .

According to the model and Lyddane- Sachs-Teller relation,
the dielectric constant of liquid water can be estimated ε∞1 =

c2/v2
f ≈ 5.46 at approximately 10 THz and ε01 ≈ 8.05 at about

1 THz. The change in dielectric constant versus frequency repre-
sents an electro-acoustic correlation. Indeed, the collective den-
sity fluctuations make the distribution of electrons around hydro-
gen and oxygen atoms periodically distort, resulting in the change
of the dielectric constant.

The group and phase velocity corresponding to the high-energy
mode of collective density oscillations could be defined vgf (Q) =
dΩ+(Q)
dQ and vpf (Q) = dΩ+(Q)

Q (Fig. 2.2). Because vgf (Q) =

vpf (Q)≈ 3050 m/s at room conditions, we could infer that the
collective density vibrations in the large Q-region and high fre-
quencies could perform the function of information propagation
into organics. The phase velocity and the group speed for the
low-frequency mode are also given in similar way.
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Fig. 2.2. Phase and group speeds - dashed and dotted curves
for the high-frequency mode; the solid curves - phase speed and
dot-dashed - group speed for the low-frequency mode.

2.3 Microscopic approach for low-frequency
dielectric constant

We suggest that the dispersion of the permittivity is in the
relation with two separated arguments, in agreement with the
common theory about the isosbestic point. The first argument
relates to the rotation of dipoles in the direction of electric field,
depending on T . Because the thermal noise leads to the difficulty
in polarization of dipoles, increasing temperature makes this ar-
gument decrease. We propose

εdip(T ) = D1exp(υ1
T0 − Ti
T − Ti

) + %∞, (2.2)

where %∞, D1 and υ1 are constants, Ti = 273 K, and T0 = 293 K

is the room temperature. The second argument is in relation
to the motion toward the electrodes of ion pairs created from
Maxwell-Wagner-Sillars effect, depending on both T and ω

εion(ω, T ) = Bion(T )exp[−βion(T )ω]. (2.3)
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Fig. 2.3. The ω−dependence of ε(ω, T ) in the model.

In the relationship (2.3), we suggest that

Bion(T ) = αion + θionexp[
−ηion(T0 − Ti)

T − Ti
]

βion(T ) = aion + bion
T0 − Ti
T − Ti

,

in which αion, θion, ηion, aion, and bion are constants. The ap-
pearance of Bion(T ) and βion(T ) in εion(ω, T ) illustrates the pH
reduction upon temperature, leading to the decrease of water di-
electric constant.

The dispersion of the low-frequency permittivity is written by

ε(ω, T ) = εdip(T ) + εion(ω, T ). (2.4)

All constants in Eq. 2.4 are given on the basis of the general
theory about isosbestic points and experimental data.
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2.4 Dynamical mechanism of the isopermit-
tivity point

The dielectric constant ε(ω, T ) decreases as rising frequency
and vice versa at a definite temperature with the existence of
the isopermittive point at ωiso, in agreement with experimental
results with a small deviation (Fig. 2.3 and 2.4). As increasing
T , the first component increases while the second component de-
creases at frequencies below ωiso or vice versa above ωiso. Thus,
both the effects compensate each other, resulting in the isoper-
mittivity point at ωiso.

Fig. 2.4. Comparing dielectric dispersion of liquid water in the
model at 301K (solid curve) and 313K (dashed one) with experi-
mental data.

2.5 Van’t Hoff effect and isopermittive point

At the isopermittivity point, the system is in equilibrium, ex-
hibiting van’t Hoff effect ∆Gequil = −RT lnKequil (∆Gequil-Gibbs
free energy variation) where the equilibrium constant Kequil =
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εdip(T )/εion(ω, T ). Van’t Hoff plot corresponds to the equation

y(1/T ) = lnKequil =
∆Gequil
RT

=
∆Hequil

RT
−

∆Sequil
R

. (2.5)

in which ∆Hequil and ∆Sequil are respectively the enthalpy and
the entropy changes. Because van’t Hoff plot is a strange line
(Fig. 2.5), ∆Hequil does not depend on T , resulting in the isop-
ermittivity point. According to van’t Hoff plot, it is pointed out
that ∆Hequil ≈ T∆Sequil, i.e. ∆Gequil ≈ 0 at ωiso in the temper-
ature range of 301− 313K. Therefore, the system reaches to the
thermal equilibrium state in a narrow range of temperature.

Fig. 2.5. Van’t Hoff plot in the model.
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Chapter 3

MICROWAVE ELECTRODYNAMICS OF ELEC-

TROLYTE SOLUTIONS

Firstly, the plasmon frequency for electrolyte solutions is given
by using jellium theory. Then, the dispersion of microwave con-
ductivity of the solution is built by combining jellium and Drude
theories. Finally, the validity of the model is assessed. The ma-
terial presented in this chapter forms the basis of the first paper
in the list of the author’s works related to the thesis.

3.1 Plasmon frequency of electrolyte solu-
tions

Jellium theory is applied to determine plasmon frequency of
electrolyte solutions. The plasmon frequency is the solution of
two Lagrange functions for anion and cation in the long wave-
length limit

ω2
pso =

∑
i

Niz
2
i e

2

ε0mi
, (3.1)

where ionic species is labeled by i with the density Ni, charge
zie (zi is the reduced effective electron charge and e is electron
charge), and mass mi, ε0 is the electric constant.

For NaCl solution, a representative electrolyte solution, with
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the density of cation Nion, the plasmon frequency is

ω2
p =

Nione
2

m∗ε0
, (3.2)

with m∗ - the effective mass of ions, ωp ≈ 1012 Hz.

3.2 Microwave conductivity in Drude-jellium
model

Fig. 3.1. σ0
max at 1 GHz of NaCl solution in Drude-jellium

model versus the number of ions is shown by the solid line, in
agreement with experimental data (symbols). The dashing line -
static conductivity.

Because the dissociated ions play the role as free electrons,
it is suitable to apply Drude model for metal permittivity for
description of the permittivity of electrolyte solutions εD(ω) =

ε
′′
D(ω) = jσ0

m/(ε0ω), in which the frequency of field ω is much
smaller than the damping constant γ0. The static conductivity
of NaCl solution is

σ0
solu =

Nione
2

γ0m∗
. (3.3)
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At a couple of GHz, the absence of diffusion motion makes
the damping constant lower, symbolized γi, the conductivity of
the solution in low-frequency range is given by

σ0
max =

Nione
2

γim∗
. (3.4)

In comparison with experimental data (Fig. 3.1), we have γi ≈
0.78× 1014 s−1 ≈ 0.8γ0.

Ions can’t response to EM field at enough higher frequency
ωC , called cutoff frequency, due to their large mass. Because of
the thermal fluctuations, the number of ions being responsible for
the conductivity of solution gradually decreases versus frequency.
We suggest that it obeys logistic statistic. The dispersion of the
microwave conductivity is thus expressed by

σsolu(ω) =
Nione

2

γim∗
1

1 + exp[αL(ω − ωc)]
, (3.5)

where αL = 8.38h/kBT0 (kB is Boltzmann constant) is the steep-
ness of the curve.

3.3 Results and discussions

Logistic function describes quite well the dispersion of mi-
crowave conductivity of electrolyte solutions, in agreement with
experimental data for different concentrations (Fig. 3.2). More-
over, it is able to infer the diffusion coefficient

Dd =
kBT

m∗γi
. (3.6)

expressing its linear dependence on T like Stokes–Einstein equa-
tion.
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Fig. 3.2. The microwave conductivity in Drude-jellium model for
NaCl solution with concentrations of 2.96 %, 6.93 %, and 11.05 %
is represented by the solid line, dot-dashed line, and dashing line,
respectively, in comparison with data (symbols).

The influence of water background on the motion of ions could
be a reason that makes the cutoff frequency much smaller than
the plasmon frequency (ωC = 10−2ωp). Therefore, we recommend
further extending the model by taking into account influence of
water background.
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Chapter 4

NONLINEAR ELECTROSTATICS OF ELECTROLYTE

SOLUTIONS

A statistic model is built to interpret the nonlinear decrement
of dielectric constant that is useful to see more obviously the
decrement in the Debye screening length versus concentration.
In addition, a simple model depicting the nonlinear increase in
specific conductivity is given via considering the property of the
local electric field. The material presented in this chapter forms
the basis of the third paper in the list of the author’s works and
a manuscript, in preparation for Communications in Physics.

4.1 Statistic model for the static permittiv-
ity of electrolyte solutions

The orientation polarization of the pure liquid water in the
direction of electric field is expressed as

P = N0µF , (4.1)

in which N0 is the dipole density and µ̄F is the average water
dipole moment. However, for an electrolyte solution with con-
centration c

P (c, E) = N∗µF , (4.2)
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where N∗ = N0{1 − γ(c)}. γ(c) is the correction function be-
cause of the dilution of dipole density by non-polar ions and the
influence of the local electric field on the rotational polarization
of dipoles, obeying the Langevin statistic that is familiar in use
to treat the paramagnetism of solid materials, γ(c) = L(αc) (α is
in relation to the ionic size).

Fig. 4.1. The c− dependence of the static permittivity for elec-
trolyte solutions at 298K in the model, in agreement with exper-
imental data (symbols).

The dielectric constant of solutions is given by

εs(c) = εd +
1

ε0

P (c, E)

E
, (4.3)

in which εd is the dielectric part originated from the other effects.
Therefore

εs(c) = εw{1−
αc

3
+

(αc)3

45
− (αc)5

945
+ . .}, (4.4)

where εw is the dielectric constant of pure water. The model
exhibits the nonlinear decrement in the permittivity for different
electrolyte solutions with concentration below 5 mol/L although
it is in the simple mathematical form, in agreement with experi-
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mental data (Fig. 4.1). Moreover, the parameter α in relation to
the ionic size is extracted.

4.2 Debye screening length

Fig. 4.2. Debye screening length versus the concentration of
NaCl solution at 298K in D-H theory, in the model with the
linear decrement and nonlinear decrement.

The inverse Debye screening length is determined by

K =

√
4πe2NA

εsε0kBT

∑
i

ciz2
i , (4.5)

where NA is Avogadro’s number. According to the statistical
model

K2(c) =
K2

0

1− αc
3 + (αc)3

45 −
(αc)5

945 + . .
, (4.6)

where K0 =
√

4πe2NA
εwε0kBT

∑
i
ciz2

i .

Taking into account the linear decrement in static permit-
tivity, the difference in the Debye screening length between this
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model and the original Debye-Hückel (D-H) theory is quite large
for concentrated solutions (Fig. 4.2).
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Fig. 4.3. The dependence of the Debye length on (bK0)2 accord-
ing to the nonlinear and linear decrement of the static permittiv-
ity.

In 2015, it was calculated the activity coefficient of electrolyte
solutions according to the linear decrement in static permittivity
in the function of K0

εs = εwf(K0). (4.7)

Providing the simple and explicit form of f(K0) could simplify
calculations in this work and improve the agreement between the-
oretical results and experimental data. It is easy to give

f(K0) = 1− (bK0)2

3
+

(bK0)6

45
− (bK0)10

945
+ . .′ (4.8)

where (bK0)2 = αc (b - mean radius of ions) without any fitting
parameter.

K could be presented in the function of K0
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K2 =
K2

0

1− (bK0)2

3 + (bK0)6

45 − (bK0)10

945 + .
. (4.9)

There is a significant difference of the Debye lengths between
these two ways according to the linear and the nonlinear decre-
ments in static permittivity (Fig. 4.3). Possibly, it is the reason
for a deviation with the experimental data on activity coefficients
in the previous work.

4.3 Simple model for static specific conduc-
tivity

Fig. 4.4. The specific conductivity of dilute NaCl solution versus
c in the model (line) in comparison with experimental data.

The static conductivity is a linear function of concentration
for dilute electrolyte solutions but a nonlinear one for concen-
trated solutions. For dilute solutions, the own field radiated by
free ions covers a small part of the whole space, i.e. in weak
regime. Inversely, the own field covers almost the whole space
for concentrated solutions, resulting in strong interaction regime.
According to several experimental evidences, the transformation
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from the weak to the strong regimes of the local electric field
happens at about 0.4 mol/L.

Below 0.4 mol/L, the viscosity of the solution is similar to
that of pure water, η0. The mobility bi of ion type i th with
concentration ci is given by bi = zie/6πη0ri, where ri are the
radius of the ion. Because free ions behave as free electrons in
metals, the conductivity versus concentration is given

σ0
dilu(c) =

∑
i

NAciz
2
i e

2

6πη0ri
. (4.10)

Fig. 4.5. The specific conductivity of concentrated NaCl solution
versus c in the model (curve) in comparison with experimental
data.

Above 0.4 mol/L, the viscosity of solution η depends on c,
η = η0(1 + C

√
c + Dc) (C and D are constants). The specific

conductivity σ0
solu(c) is thus written by

σ0
solu(c) =

∑
i

NAciz
2
i e

2

6πriη0(1 + C
√
ci +Dci)

. (4.11)

This function exhibits the nonlinear feature of the static conduc-
tivity (Fig. 4.5), in agreement with experimental observation.
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CONCLUSIONS

In this thesis, we focused on studying about several micrody-
namic behaviors of water systems with following results:

• Modified PP model was developed for interpreting the dis-
persion of collective density oscillations in liquid water, point-
ing out the spectrum range and the wave vector region, and
estimating some water critical electrodynamic parameters.

• Giving a model with two separated arguments for describing
the dispersion of the water permittivity at low frequencies
and illuminating the mechanism responsible for the exis-
tence of isopermittivity point on the basis of electrodynam-
ics as well as thermodynamics.

• Combining jellium and Drude theories for a description of
the microwave conductivity dispersion and further illumina-
tion about the microscopic mechanism of electrodynamics
of electrolyte solutions

• A statistic model is given for description of the nonlin-
ear decrement in the permittivity of electrolyte solutions
by customizing the Langevin statistics. According to the
model, the Debye screening length is calculated more care-
fully. Thus, the deviation between theoretical results and
experimental data about the activity coefficient in the pre-
vious work is explained.

• A simple model is built to describe the nonlinear reliance
of conductivity versus concentration by taking into account
the regime transformation of the own field radiated by ions.
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FURTHER RESEARCH DIRECTIONS

Applying PP theory to research collective density oscillations
of the other liquids and thermodynamic features of water; Inves-
tigation into the interaction in biological and chemical materials;
Study on electrostatics of electrolyte aqueous solutions upon tem-
perature.
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